% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Agostini:873335,
      author       = {Agostini, M. and Altenmüller, K. and Appel, S. and
                      Atroshchenko, V. and Bagdasarian, Z. and Basilico, D. and
                      Bellini, G. and Benziger, J. and Bick, D. and Bonfini, G.
                      and Bravo, D. and Caccianiga, B. and Calaprice, F. and
                      Caminata, A. and Cappelli, L. and Cavalcante, P. and
                      Cavanna, F. and Chepurnov, A. and Choi, K. and D'Angelo, D.
                      and Davini, S. and Derbin, A. and Di Giacinto, A. and Di
                      Marcello, V. and Ding, X. F. and Di Ludovico, A. and Di
                      Noto, L. and Drachnev, I. and Formozov, A. and Franco, D.
                      and Gabriele, F. and Galbiati, C. and Gschwender, M. and
                      Ghiano, C. and Giammarchi, M. and Goretti, A. and Gromov, M.
                      and Guffanti, D. and Hagner, C. and Hungerford, E. and
                      Ianni, Aldo and Ianni, Andrea and Jany, A. and Jeschke, D.
                      and Kumaran, S. and Kobychev, V. and Korga, G. and
                      Lachenmaier, T. and Laubenstein, M. and Litvinovich, E. and
                      Lombardi, P. and Lomskaya, I. and Ludhova, L. and
                      Lukyanchenko, G. and Lukyanchenko, L. and Machulin, I. and
                      Manuzio, G. and Marcocci, S. and Maricic, J. and Martyn, J.
                      and Meroni, E. and Meyer, M. and Miramonti, L. and
                      Misiaszek, M. and Muratova, V. and Neumair, B. and Nieslony,
                      M. and Oberauer, L. and Orekhov, V. and Ortica, F. and
                      Pallavicini, M. and Papp, L. and Penek, Ömer and
                      Pietrofaccia, L. and Pilipenko, N. and Pocar, A. and Raikov,
                      G. and Ranalli, M. T. and Ranucci, G. and Razeto, A. and Re,
                      A. and Redchuk, Mariia and Romani, A. and Rossi, N. and
                      Rottenanger, S. and Schönert, S. and Semenov, D. and
                      Skorokhvatov, M. and Smirnov, O. and Sotnikov, A. and
                      Suvorov, Y. and Tartaglia, R. and Testera, G. and Thurn, J.
                      and Unzhakov, E. and Vishneva, A. and Vogelaar, R. B. and
                      von Feilitzsch, F. and Wojcik, M. and Wurm, M. and
                      Zaimidoroga, O. and Zavatarelli, S. and Zuber, K. and Zuzel,
                      G.},
      title        = {{S}earch for low-energy neutrinos from astrophysical
                      sources with {B}orexino},
      reportid     = {FZJ-2020-00648},
      year         = {2019},
      note         = {18 pages, 8 figures, 4 tables, 73 references},
      abstract     = {We report on searches for neutrinos and antineutrinos from
                      astrophysical sources performed with the Borexino detector
                      at the Laboratori Nazionali del Gran Sasso in Italy.
                      Electron antineutrinos (ν¯e) are detected in an organic
                      liquid scintillator through the inverse β-decay reaction.
                      In the present work we set model-independent upper limits in
                      the energy range 1.8-16.8 MeV on neutrino fluxes from
                      unknown sources that improve our previous results, on
                      average, by a factor 2.5. Using the same data set, we first
                      obtain experimental constraints on the diffuse supernova
                      ν¯e fluxes in the previously unexplored region below 8
                      MeV. A search for ν¯e in the solar neutrino flux is also
                      presented: the presence of ν¯e would be a manifestation of
                      a non-zero anomalous magnetic moment of the neutrino, making
                      possible its conversion to antineutrinos in the strong
                      magnetic field of the Sun. We obtain a limit for a solar
                      ν¯e flux of 384 cm−2s−1 $(90\%$ C.L.), assuming an
                      undistorted solar 8B neutrinos energy spectrum, that
                      corresponds to a transition probability pνe→ν¯e<
                      7.2×10−5 $(90\%$ C.L.) for Eν¯e > 1.8 MeV. At lower
                      energies, by investigating the spectral shape of elastic
                      scattering events, we obtain a new limit on solar 7Be-νe
                      conversion into ν¯e of pνe→ν¯e< 0.14 $(90\%$ C.L.) at
                      0.862 keV. Last, we investigate solar flares as possible
                      neutrino sources and obtain the strongest up-to-date limits
                      on the fluence of neutrinos of all flavor neutrino below 3-7
                      ,MeV. Assuming the neutrino flux to be proportional to the
                      flare's intensity, we exclude an intense solar flare as the
                      cause of the observed excess of events in run 117 of the
                      Cl-Ar Homestake experiment.},
      cin          = {IKP-2},
      cid          = {I:(DE-Juel1)IKP-2-20111104},
      pnm          = {612 - Cosmic Matter in the Laboratory (POF3-612)},
      pid          = {G:(DE-HGF)POF3-612},
      typ          = {PUB:(DE-HGF)25},
      eprint       = {1909.02422},
      howpublished = {arXiv:1909.02422},
      archivePrefix = {arXiv},
      SLACcitation = {$\%\%CITATION$ = $arXiv:1909.02422;\%\%$},
      url          = {https://juser.fz-juelich.de/record/873335},
}