000873376 001__ 873376
000873376 005__ 20210130004423.0
000873376 0247_ $$2doi$$a10.1021/acs.jpcb.9b05071
000873376 0247_ $$2ISSN$$a1089-5647
000873376 0247_ $$2ISSN$$a1520-5207
000873376 0247_ $$2ISSN$$a1520-6106
000873376 0247_ $$2Handle$$a2128/24120
000873376 0247_ $$2altmetric$$aaltmetric:69682892
000873376 0247_ $$2pmid$$apmid:31556613
000873376 0247_ $$2WOS$$aWOS:000497259800002
000873376 037__ $$aFZJ-2020-00688
000873376 082__ $$a530
000873376 1001_ $$00000-0001-5495-9186$$aGolub, Maksym$$b0
000873376 245__ $$aSolution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein: Part I. Small-Angle Scattering
000873376 260__ $$aWashington, DC$$bSoc.$$c2019
000873376 3367_ $$2DRIVER$$aarticle
000873376 3367_ $$2DataCite$$aOutput Types/Journal article
000873376 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580459570_18264
000873376 3367_ $$2BibTeX$$aARTICLE
000873376 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873376 3367_ $$00$$2EndNote$$aJournal Article
000873376 520__ $$aOrange carotenoid proteins (OCPs) are photoswitchable macromolecules playing an important role in nonphotochemical quenching of excess energy in cyanobacterial light harvesting. Upon absorption of a blue photon (450–500 nm), OCPs undergo a structural change from the ground state OCPO to the active state OCPR, but high-resolution structures of the active state OCPR are not yet available. Here, we use small-angle scattering methods combined with simulation tools to determine low-resolution structures of the active state at low protein concentrations via two approaches: first, directly by in situ illumination of wild-type OCP achieving a turnover to the active state of >90% and second, by using the mutant OCPW288A anticipated to mimic the active state structure. Data fits assuming the shape of an ellipsoid yield three ellipsoidal radii of about 9, 29, and 51 ± 1 Å, in the case of the ground state OCPO. In the active state, however, the molecule becomes somewhat narrower with the two smaller radii being 9 and only 19 ± 3 Å, while the third dimension of the ellipsoid is significantly elongated to 85–92 ± 5 Å. Reconstitutions of the active state structure corroborate that OCPR is significantly elongated compared to the ground state OCPO and characterized by a separation of the N-terminal and C-terminal domains with unfolded N-terminal extension. By direct comparison of small-angle scattering data, we directly show that the mutant OCPW288A can be used as a structural analogue of the active state OCPR. The small-angle experiments are repeated for OCPO and the mutant OCPW288A at high protein concentrations of 50–65 mg/mL required for neutron spectroscopy investigating the molecular dynamics of OCP (see accompanying paper). The results reveal that the OCPO and OCPW288A samples for dynamics experiments are preferentially dimeric and widely resemble the structures of the ground and active states of OCP, respectively. This enables us to properly characterize the molecular dynamics of both states of OCP in the accompanying paper.
000873376 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000873376 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000873376 588__ $$aDataset connected to CrossRef
000873376 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000873376 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000873376 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000873376 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000873376 7001_ $$0P:(DE-HGF)0$$aMoldenhauer, Marcus$$b1
000873376 7001_ $$0P:(DE-HGF)0$$aSchmitt, Franz-Josef$$b2
000873376 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b3$$ufzj
000873376 7001_ $$0P:(DE-HGF)0$$aMändar, Hugo$$b4
000873376 7001_ $$0P:(DE-HGF)0$$aMaksimov, Eugene$$b5
000873376 7001_ $$0P:(DE-HGF)0$$aFriedrich, Thomas$$b6
000873376 7001_ $$0P:(DE-HGF)0$$aPieper, Jörg$$b7$$eCorresponding author
000873376 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.9b05071$$gVol. 123, no. 45, p. 9525 - 9535$$n45$$p9525 - 9535$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v123$$x1520-5207$$y2019
000873376 8564_ $$uhttps://juser.fz-juelich.de/record/873376/files/acs.jpcb.9b05071.pdf$$yRestricted
000873376 8564_ $$uhttps://juser.fz-juelich.de/record/873376/files/Pieper2019.pdf$$yPublished on 2019-09-26. Available in OpenAccess from 2020-09-26.
000873376 8564_ $$uhttps://juser.fz-juelich.de/record/873376/files/acs.jpcb.9b05071.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873376 8564_ $$uhttps://juser.fz-juelich.de/record/873376/files/Pieper2019.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-09-26. Available in OpenAccess from 2020-09-26.
000873376 909CO $$ooai:juser.fz-juelich.de:873376$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000873376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b3$$kFZJ
000873376 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000873376 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000873376 9141_ $$y2019
000873376 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873376 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873376 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000873376 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873376 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873376 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873376 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873376 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873376 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873376 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000873376 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873376 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873376 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873376 920__ $$lyes
000873376 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000873376 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000873376 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000873376 980__ $$ajournal
000873376 980__ $$aVDB
000873376 980__ $$aUNRESTRICTED
000873376 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000873376 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000873376 980__ $$aI:(DE-588b)4597118-3
000873376 9801_ $$aFullTexts