001     873379
005     20250129092440.0
024 7 _ |a 10.1088/1748-0221/15/01/C01023
|2 doi
024 7 _ |a 2128/24311
|2 Handle
024 7 _ |a WOS:000525449100023
|2 WOS
037 _ _ |a FZJ-2020-00691
082 _ _ |a 610
100 1 _ |a Kumar, S.
|0 P:(DE-Juel1)169828
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Timing resolution of SiPM technologies before and after neutron irradiation
260 _ _ |a London
|c 2020
|b Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581407685_29859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, silicon photomultiplier (SiPM) technology has been getting attention from various applications due to its low cost, immunity to magnetic field, compactness and ruggedness. However, its applicability in experiments with harsh radiation environments is still limited due to lack of corresponding radiation damage studies. A 10-year lifetime operation in a typical Small Angle Neutron Scattering (SANS) experiment with an acceptable degradation in photon detection efficiency has already been reported. In this article, we discuss the feasibility study of SiPM technology in neutron time of flight experiments. For this purpose, two analog SiPMs, developed by SensL and Hamamatsu, have been irradiated with cold neutrons (5 Å ) up to a dose of 6⋅1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Germany. After irradiation, the timing resolutions of the SiPMs have been measured under pulsed laser beam with a few hundred photons (405 nm) per pulse, and a degradation of up to 6 ps has been observed. The degradation might be a result of noise increase, introduced by surface defects caused by neutron exposure damage. Additionally, variation of the excess voltage helped to reveal the difference in the timing resolutions between irradiated and non-irradiated SiPMs, which remained almost constant.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 1
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Niraula, L.
|0 P:(DE-Juel1)177642
|b 1
700 1 _ |a Arutinov, D.
|0 P:(DE-Juel1)174033
|b 2
|u fzj
700 1 _ |a Mora, A. Dalla
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Waasen, S. Van
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1088/1748-0221/15/01/C01023
|g Vol. 15, no. 01, p. C01023 - C01023
|0 PERI:(DE-600)2235672-1
|n 01
|p C01023 - C01023
|t Journal of Instrumentation
|v 15
|y 2020
|x 1748-0221
856 4 _ |u https://juser.fz-juelich.de/record/873379/files/Kumar_2020_J._Inst._15_C01023.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/873379/files/Kumar_2020_J._Inst._15_C01023.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2020-01-20. Available in OpenAccess from 2021-01-20.
|u https://juser.fz-juelich.de/record/873379/files/kumar_Kumar%20et.%20al_JINST.pdf
856 4 _ |y Published on 2020-01-20. Available in OpenAccess from 2021-01-20.
|x pdfa
|u https://juser.fz-juelich.de/record/873379/files/kumar_Kumar%20et.%20al_JINST.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873379
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174033
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INSTRUM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-588b)4597118-3
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21