000873402 001__ 873402 000873402 005__ 20240711085629.0 000873402 0247_ $$2doi$$a10.3390/ma13030614 000873402 0247_ $$2Handle$$a2128/24260 000873402 0247_ $$2pmid$$apmid:32019115 000873402 0247_ $$2WOS$$aWOS:000515503100121 000873402 037__ $$aFZJ-2020-00712 000873402 041__ $$aEnglish 000873402 082__ $$a600 000873402 1001_ $$0P:(DE-HGF)0$$aFedeli, Paolo$$b0$$eCorresponding author 000873402 245__ $$aAsymmetric LSCF Membranes Utilizing Commercial Powders 000873402 260__ $$aBasel$$bMDPI$$c2020 000873402 3367_ $$2DRIVER$$aarticle 000873402 3367_ $$2DataCite$$aOutput Types/Journal article 000873402 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580915748_15994 000873402 3367_ $$2BibTeX$$aARTICLE 000873402 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000873402 3367_ $$00$$2EndNote$$aJournal Article 000873402 520__ $$aPowders of constant morphology and quality are indispensable for reproducible ceramic manufacturing. In this study, commercially available powders were characterized regarding their microstructural properties and screened for a reproducible membrane manufacturing process, which was done by sequential tape casting. Basing on this, the slurry composition and ratio of ingredients were systematically varied in order to obtain flat, crack-free green tapes suitable for upscaling of the manufacturing process. Debinding and sintering parameters were adjusted to obtain defect-free membranes with diminished bending. The crucial parameters are the heating ramp, sintering temperature, and dwell time. The microstructure of the asymmetric membranes was investigated, leading to a support porosity of approximately 35% and a membrane layer thickness of around 20 µm. Microstructure and oxygen flux are comparable to asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membranes manufactured from custom-made powder, showing an oxygen flux of > 1 mLcm−2min at 900 °C in air/Ar gradient. 000873402 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000873402 536__ $$0G:(EU-Grant)608524$$aGREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)$$c608524$$fFP7-ENERGY-2013-1$$x1 000873402 7001_ $$0P:(DE-HGF)0$$aDrago, Francesca$$b1 000873402 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b2$$ufzj 000873402 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b3$$ufzj 000873402 770__ $$aMembrane Materials for Gas Separation 000873402 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma13030614$$n3$$p614$$tMaterials$$v13$$x1996-1944$$y2020 000873402 8564_ $$uhttps://juser.fz-juelich.de/record/873402/files/Fedeli20%20-%20Asymmetric%20LSCF%20membranes%20utilizing%20commercial%20powders.pdf$$yOpenAccess 000873402 8564_ $$uhttps://juser.fz-juelich.de/record/873402/files/Fedeli20%20-%20Asymmetric%20LSCF%20membranes%20utilizing%20commercial%20powders.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000873402 909CO $$ooai:juser.fz-juelich.de:873402$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000873402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ 000873402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b3$$kFZJ 000873402 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000873402 9141_ $$y2020 000873402 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000873402 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000873402 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000873402 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000873402 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2017 000873402 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000873402 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000873402 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000873402 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000873402 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000873402 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000873402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000873402 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000873402 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000873402 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000873402 920__ $$lyes 000873402 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000873402 9801_ $$aFullTexts 000873402 980__ $$ajournal 000873402 980__ $$aVDB 000873402 980__ $$aUNRESTRICTED 000873402 980__ $$aI:(DE-Juel1)IEK-1-20101013 000873402 981__ $$aI:(DE-Juel1)IMD-2-20101013