000873489 001__ 873489
000873489 005__ 20210130004438.0
000873489 0247_ $$2doi$$a10.1016/j.epsl.2019.115978
000873489 0247_ $$2ISSN$$a0012-821X
000873489 0247_ $$2ISSN$$a1385-013X
000873489 0247_ $$2Handle$$a2128/24131
000873489 0247_ $$2altmetric$$aaltmetric:72233545
000873489 0247_ $$2WOS$$aWOS:000510947100033
000873489 037__ $$aFZJ-2020-00766
000873489 082__ $$a550
000873489 1001_ $$00000-0003-1109-0200$$aBarras, Fabian$$b0
000873489 245__ $$aThe emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance
000873489 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000873489 3367_ $$2DRIVER$$aarticle
000873489 3367_ $$2DataCite$$aOutput Types/Journal article
000873489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580474974_16746
000873489 3367_ $$2BibTeX$$aARTICLE
000873489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873489 3367_ $$00$$2EndNote$$aJournal Article
000873489 520__ $$aThe failure of frictional interfaces — the process of frictional rupture — is widely assumed to feature crack-like properties, with far-reaching implications for various disciplines, ranging from engineering tribology to earthquake physics. An important condition for the emergence of a crack-like behavior is the existence of stress drops in frictional rupture, whose basic physical origin has been recently elucidated. Here we show that for generic and realistic frictional constitutive relations, and once the necessary conditions for the emergence of an effective crack-like behavior are met, frictional rupture dynamics are approximately described by a crack-like, fracture mechanics energy balance equation. This is achieved by independently calculating the intensity of the crack-like singularity along with its associated elastic energy flux into the rupture edge region, and the frictional dissipation in the edge region. We further show that while the fracture mechanics energy balance equation provides an approximate, yet quantitative, description of frictional rupture dynamics, interesting deviations from the ordinary crack-like framework — associated with non-edge-localized dissipation — exist. Together with the recent results about the emergence of stress drops in frictional rupture, this work offers a comprehensive and basic understanding of why, how and to what extent frictional rupture might be viewed as an ordinary fracture process. Various implications are discussed.
000873489 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000873489 588__ $$aDataset connected to CrossRef
000873489 7001_ $$00000-0002-1288-3563$$aAldam, Michael$$b1
000873489 7001_ $$0P:(DE-HGF)0$$aRoch, Thibault$$b2
000873489 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b3$$eCorresponding author
000873489 7001_ $$00000-0001-8821-1635$$aBouchbinder, Eran$$b4
000873489 7001_ $$0P:(DE-HGF)0$$aMolinari, Jean-François$$b5
000873489 773__ $$0PERI:(DE-600)1466659-5$$a10.1016/j.epsl.2019.115978$$gVol. 531, p. 115978 -$$p115978 -$$tEarth and planetary science letters$$v531$$x0012-821X$$y2020
000873489 8564_ $$uhttps://juser.fz-juelich.de/record/873489/files/Published_EPSL531_115978_2020-1.pdf$$yRestricted
000873489 8564_ $$uhttps://juser.fz-juelich.de/record/873489/files/1907.04376.pdf$$yOpenAccess
000873489 8564_ $$uhttps://juser.fz-juelich.de/record/873489/files/Published_EPSL531_115978_2020-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873489 8564_ $$uhttps://juser.fz-juelich.de/record/873489/files/1907.04376.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873489 909CO $$ooai:juser.fz-juelich.de:873489$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
000873489 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873489 9141_ $$y2020
000873489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873489 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873489 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000873489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEARTH PLANET SC LETT : 2017
000873489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873489 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873489 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873489 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873489 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873489 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873489 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873489 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873489 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873489 920__ $$lyes
000873489 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000873489 980__ $$ajournal
000873489 980__ $$aVDB
000873489 980__ $$aUNRESTRICTED
000873489 980__ $$aI:(DE-Juel1)PGI-2-20110106
000873489 9801_ $$aFullTexts