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The failure of frictional interfaces — the process of frictional rupture — is widely assumed to
feature crack-like properties, with far-reaching implications for various disciplines, ranging from
engineering tribology to earthquake physics. An important condition for the emergence of a crack-
like behavior is the existence of stress drops in frictional rupture, whose basic physical origin has been
recently elucidated. Here we show that for generic and realistic frictional constitutive relations, and
once the necessary conditions for the emergence of an effective crack-like behavior are met, frictional
rupture dynamics are approximately described by a crack-like, fracture mechanics energy balance
equation. This is achieved by independently calculating the intensity of the crack-like singularity
along with its associated elastic energy flux into the rupture edge region, and the frictional dissipation
in the edge region. We further show that while the fracture mechanics energy balance equation
provides an approximate, yet quantitative, description of frictional rupture dynamics, interesting
deviations from the ordinary crack-like framework — associated with non-edge-localized dissipation
— exist. Together with the recent results about the emergence of stress drops in frictional rupture,
this work offers a comprehensive and basic understanding of why, how and to what extent frictional
rupture might be viewed as an ordinary fracture process. Various implications are discussed.

I. BACKGROUND AND MOTIVATION

Rapid slip along interfaces separating bodies in fric-
tional contact is mediated by the spatiotemporal dynam-
ics of frictional rupture [41, 43], which is a fundamental
process of prime importance for a broad range of physi-
cal systems. For example, it is responsible for squealing
in car brake pads [36], for bowing on a violin string [16],
and for earthquakes along geological faults [8, 28, 35],
to name just a few well-known examples. A very power-
ful conceptual and quantitative framework to understand
frictional dynamics in a wide variety of physical contexts
is the analogy between frictional rupture and ordinary
fracture/cracks.
This framework is extensively used to interpret and

quantify geophysical observations [2, 12], as well as a
broad spectrum of laboratory phenomena [7, 26, 27, 34,
40, 42, 44, 45]. For example, a recent series of careful lab-
oratory experiments [7, 44, 45] demonstrated that when
the analogy between frictional rupture and ordinary frac-
ture holds, the dynamic propagation of laboratory earth-
quakes and their arrest can be quantitatively understood
to an unprecedented degree [24]. Yet, the fundamental
physical origin and range of validity of the analogy be-
tween frictional rupture and ordinary fracture are not yet
fully understood.
An important condition for the analogy to hold is

the emergence of a finite and well-defined stress drop
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∆τ=τd− τres, the difference between the applied driving
stress τd and the residual stress τres, in frictional rup-
ture. In a very recent paper [1] we showed that, contrary
to widely adopted assumptions, the residual stress τres
is not a characteristic property of frictional interfaces.
Rather, for rapid rupture τres is shown to crucially de-
pend on elastodynamic bulk effects — in particular wave
radiation from the frictional interface to the bulks sur-
rounding it and long-range elastodynamic bulk interac-
tions — and that the existence of a finite stress drop ∆τ ,
is a finite time effect, limited by the wave travel time in
finite systems. Specifically, it has been shown that

∆τ(τd) ≃
µ

2cs
v0res(τd) , (1)

where µ is the shear modulus of the bulks surrounding the
frictional interface, cs is the corresponding shear wave-
speed and v0res is the theoretically predicted residual slip
velocity behind the propagating rupture edge. v0res(τd) is
determined through the approximate equation τss(v

0
res)+

µ
2cs

v0res≃τd, once long-range elastodynamic contributions

are omitted [1], where τss(v) is the steady-state friction
curve as a function of slip velocity v.
The theoretical prediction in Eq. (1) has been sup-

ported by existing experimental results for rapid fric-
tional rupture [1], for times shorter than the waves re-
flection time from outer boundaries, and by computer
simulations in infinite systems. An example taken from
one of these computer simulations is presented in Fig. 1a
(cf. Fig. 3 in Barras et al. [1]), where two rapid rup-
ture fronts propagating in opposite directions are ob-
served, leaving behind them a well-defined stress drop
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II. CRACK-LIKE SCALING AND THE

DEPENDENCE OF THE LENGTH-VELOCITY

RELATION ON THE STRESS DROP

As explained above, and with the results of Barras
et al. [1] in mind, we aim at carefully exploring the impli-
cations of stress drops — once they exist — for frictional
dynamics. The expected implications, to be detailed be-
low, directly follow from the analogy to ordinary frac-
ture mechanics and consequently from its standard pre-
dictions [8, 43]. The challenge is to test whether these
predictions are satisfied as emergent properties of the un-
derlying physics without assuming them a priori. Some
of these predictions have been previously studied in the
literature [10, 15–17, 19, 33, 46], but to the best of our
knowledge these studies have not yet led to a compre-
hensive picture of the analogy between frictional rupture
and ordinary fracture.
The existence of a stress drop behind the two edges

of propagating frictional rupture, cf. Fig. 1a, suggests
that the load bearing capacity of the interface in this
region is reduced, τres<τd, and consequently that parts
of the interface ahead of the edges should compensate for
this reduction, i.e. carry stress that is larger than τd. In
the framework of the classical theory of fracture, the so-
called Linear Elastic Fracture Mechanics (LEFM), this
stress amplification ahead of the rupture edges follows a
universal singularity as the rupture edge is approached [8]

τ(x) ∼ K(L, cr)
√

|x− xr|
, K(L, cr) ∼ ∆τ

√
LK(cr/cs) , (2)

where K quantifies the intensity of the singularity (hence
it is termed the stress intensity factor [23]), xr is the lo-
cation of each of the rupture edges, L is the instanta-
neous distance between the two edges (i.e. the rupture
length/size, cf. Fig. 1a) and K(cr/cs) is a dimension-
less function of the instantaneous propagation speed cr of
each edge. We note that here and below numerical pre-
factors are omitted as we are interested in crack-like scal-
ing relations in this section. In addition, the slip velocity
is predicted to follow the very same singular behavior

v(x) ∼ cr K(L, cr)

µ
√

|x− xr|
, (3)

just behind the edges (note the absolute value). As
expected, the intensity of the amplification/singularity
K(L, cr) in Eq. (2) increases with increasing ∆τ and the
rupture length L (L is the size of the region in which
the interfacial load bearing capacity is reduced, hence a
larger compensation/amplification exists). The relations
in Eqs. (2)-(3) are valid independently of the symme-
try mode of rupture, and in particular in the context of
frictional rupture, they are valid for both in-plane shear
(mode-II) and anti-plane shear (mode-III) symmetries.
Standard fracture mechanics predicts that the square

root singularity in Eqs. (2)-(3) is accompanied by a finite
flux of energy G into the rupture edge region (known as

the energy release rate [23], even though it is not a rate),
taking the form [23]

G(L, cr) ∼ A(cr/cs)
[K(L, cr)]

2

µ
, (4)

where A(cr/cs) is a known universal and dimensionless
function that depends on the fracture symmetry mode
(here mode-II or mode-III). Finally, by invoking energy
balance in the edge region, standard fracture mechanics
predicts that [8]

G(L, cr) = Gc(cr) , (5)

where Gc(cr) is the effective fracture energy (of dimen-
sions of energy per unit area) associated with the transi-
tion from the v≈ 0 state ahead of the edge to the v > 0
state behind it, which possibly depends on the rupture
speed cr. It is crucial to understand that unlike ordinary
tensile (mode-I symmetry) fracture, where Gc(cr) is the
only dissipation in the problem, in the friction problem
frictional dissipation exists everywhere along the sliding
interface and not just in the transition region near the
rupture edge. The way energy dissipation is partitioned
in the friction problem will be discussed below.
The above discussion raises several basic questions;

most notably, does the square root singularity of Eqs. (2)-
(3) generically exist in frictional rupture once ∆τ ex-
ists? Can the effective fracture energy Gc(cr) be mean-
ingfully separated from the entire dissipation associated
with frictional motion? And if so, can the energy bal-
ance of Eq. (5) be verified by independently calculating
both Gc and G (the latter using Eq. (4))? While various
aspects of these questions have certainly been addressed
in the literature [10, 15–17, 19, 33, 46], we believe that
systematically addressing all of them in a single system is
still missing. Before performing such a systematic anal-
ysis, we address first a rather strong implication of the
relations discussed above.
Combining Eqs. (2)-(5), one obtains the following

stress drop dependent length-velocity relation

cr/cs = F [L/LG(∆τ)] with LG(∆τ) ∼ µGc

(∆τ)
2
, (6)

which is valid under the assumption that Gc is indepen-
dent of cr. Here LG(∆τ) is a generalized Griffith-like
length [7, 8] and F(·) is a monotonically increasing func-
tion that we do not specify.
To test this prediction, we employed the generic rate-

and-state friction constitutive framework, presented in
detail in Barras et al. [1]. Within this framework, the
interfacial constitutive law at any position x along the
interface and at any time t is described by the following
local relation

τ = σ sgn(v) f(|v|, φ) , (7)

which must be supplemented with a dynamical equation
for the evolution of φ. Extensive evidence indicates that
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III. THE EMERGENCE OF STRESS

SINGULARITY AND LOCAL ENERGY

BALANCE

One of the major implications of the existence of a fi-
nite stress drop ∆τ is the emergence of stress singularity
near the frictional rupture edge, as explained above and
as formulated in Eqs. (2)-(3). In order to directly test this
prediction, we present in Fig. 3a the (properly normal-
ized) spatial profiles of τ(x, t) and v(x, t) near a rupture
edge at time t. We then fit the two fields together to
Eqs. (2)-(3), demanding the same stress intensity factor
K and the same effective tip location xr (the details of
the fitting procedure are extensively discussed in the SM
[1]).
The resulting fits are superimposed on the fields τ(x, t)

and v(x, t) in Fig. 3a. The square root singular behav-
ior faithfully describes the two fields near the front edge,
supporting the prediction that such a singular behavior
emerges in the presence of a finite stress drop ∆τ . Note
that the spatial range in which the fields are described by
the square root singular behavior is larger for the slip ve-
locity v(x, t) than for the frictional stress τ(x, t). The rea-
son is that τ(x, t) features a significantly narrower range
of values between its peak value and the applied stress
τd (in the large |x| limit) compared to the corresponding
range for v(x, t), and thus the latter can accommodate a
singular behavior, which is by construction an interme-
diate asymptotic behavior, over a larger spatial range.
The results of Fig. 3a demonstrate that a rather well-

defined stress intensity factor K(L, cr) is associated with
frictional rupture in the presence of a finite stress drop
∆τ , from which the energy release rate G(L, cr) can be
readily extracted using Eq. (4) [1]. Next, in order to test
the validity of Eq. (5), we need to independently calculate
the effective fracture energy Gc associated with frictional
rupture propagation. To this aim, we define the energy
per unit area that is dissipated at a given interfacial loca-
tion x during the transition from a non-slipping/sticking
state to a steadily sliding state characterized by the resid-
ual stress τres [10]

EBD(δ;x) =

∫ δ

0

(

τ(δ′)− τres
)

dδ′ . (9)

Here the slip history at a location x is given by the slip
displacement δ(x, t) ≡ uz(x, y = 0+, t)−uz(x, y = 0−, t),

where δ̇(x, t)=v(x, t), and the subscript ’BD’ stands for
’breakdown’. The breakdown energy quantifies the excess
dissipation on top of the frictional dissipation associated
with sliding against the residual stress τres. Note that we
cannot a priori identify the breakdown energy defined in
Eq. (9) with the effective fracture energy Gc, as will be
discussed next.
In Fig. 3b we plot the breakdown energy EBD(δ;x) at

4 different interfacial locations x=ℓi, i=1−4, ordered by
their proximity to the nucleation site (the center of the
domain). It is observed that EBD(δ;x) perfectly overlaps

for the different locations x’s at small δ, but exhibits lo-
cation dependence at significantly larger δ, where it levels
off to different limiting values that become closer to one
another as x increases. These observations can be under-
stood as follows; the frictional stress τ(x, t) presented in
Fig. 3a exhibits two distinct behaviors behind the prop-
agating rupture edge (here the propagation is from right
to left). First, it features a strong decay well within the
edge region. Second, as denoted by the arrow, there ex-
ists a transition to a slow decay towards τres on a signifi-
cantly larger lengthscale, extending far beyond the edge
region (the full spatial extent of this decay is not shown).
This slow spatial decay stems from the rate and state de-
pendence of the friction law, which implies that all of
the interfacial fields in the problem τ(x, t), v(x, t), φ(x, t)
slowly approach their respective asymptotic steady-state
values τres, vres, D/vres. Finally, as rupture propagation
in the presence of a finite stress drop is intrinsically out
of steady state, i.e. rupture accelerates towards cs as
shown in Fig. 2, we expect some position dependence
of EBD(δ;x). This dependence should become weaker as
the limiting velocity cr → cs is approached, as is indeed
observed in Fig. 3b.

The physical picture emerging from the above discus-
sion suggests that the location independent part of the
breakdown energy EBD(δ;x), which is associated with
excess dissipation near the rupture edge, should be iden-
tified as the effective fracture energy Gc appearing in
Eq. (5). This idea is pictorially demonstrated by the
horizontal black line in Fig. 3b, which identifies Gc with
the point in which the various EBD(δ;x) curves start to
split/deviate one from another (from which a value of
Gc≈0.65J/m2 can be inferred). To make the identifica-
tion of Gc more quantitative and to allow a direct test
of Eq. (5), we invoke the observation that the combina-
tion vφ/D strongly overshoots unity in the edge region

(vφ/D>1 implies φ̇<0, which is associated with contact
area reduction), then slightly undershoots it and finally
approaches unity from below far from the edge [1]. We
note that the position of the first crossing vφ/D=1 ap-
proximately corresponds to the position marked by small
arrow in Fig. 3a. Consequently, the edge-localized dis-
sipation Gc can be estimated as the excess dissipation
associated with the spatial region for which vφ/D > 1,
quantified by the following spatial integral

Gc(cr) ≡
1

cr(t)

∫

vφ/D>1

(

τ(x, t)− τres
)

v(x, t) dx . (10)

We note that this estimate of Gc appears to be consis-
tent with an analytic approximation available in the lit-
erature [15–17], which may shed light on the dependence
of Gc on interfacial parameters (see SM [1] for details).
We are now in a position to directly test Eq. (5), where

the energy release rate G is calculated using the stress
intensity factor extracted as shown in Fig. 3a and Gc

through Eq. (10). In the inset of Fig. 3b, we plot the
ratio G/Gc as a function of the rupture length L. It is
observed that G/Gc is close to unity throughout the rup-
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findings imply that the analogy between frictional rup-
ture and ordinary fracture is not complete, as manifested
by the existence of a non-edge-localized contribution to
EBD.

The difference between EBD and Gc is intimately re-
lated to the generic rate and state dependence of friction,
which is responsible for the two-step nature of the stress
relaxation/weakening process associated with frictional
rupture propagation; first, there exists a rather sharp
stress drop that takes place over a relatively small slip,
bringing the stress close to, but not identically to, the
residual stress τres. Second, there exists a slower, longer-
term process that brings the stress to the residual stress
τres over significantly larger slip. The latter stress relax-
ation/weakening process, which some authors attribute
to melting or thermal pressurization [37, 47] not taken
into account in the present work, is responsible for the
difference between EBD and Gc. This physical picture
is reminiscent of the model proposed in Kanamori and
Heaton [25], and further discussed in Abercrombie and
Rice [2], in trying to resolve some puzzling observations
in relation to the energy budget of earthquake rupture.
Moreover, this physical picture is consistent with Chester

et al. [17] and Tinti et al. [46], which concluded based on
seismic data that the breakdown energy can be larger
than the fracture energy for large earthquake ruptures.
These results offer insight into open questions concerning
earthquake energy budget [2, 17, 19, 33, 46] and deserve
additional investigation.
More generally, we expect our results to provide

a conceptual and quantitative framework to address
various fundamental and applied problems in relation
to the rupture dynamics of frictional interfaces, with
implications for both laboratory and geophysical-scale
phenomena. For example, our results and theoretical
framework are expected to apply also to slip pulses.
Indeed, recent preliminary results, see Fig. S6 in Brener
et al. [2], support this expectation.
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Supplemental Material for: “The emergence of crack-like behavior of frictional
rupture: Edge singularity and energy balance”

The goal of this document is to provide additional tech-
nical details regarding the extraction of the near-edge
singular fields (Fig. 3a in the manuscript) and the ef-
fective fracture energy Gc from the interfacial dynamics
(Fig. 3b in the manuscript), both discussed in Sect. III
of the manuscript. This is achieved in two steps; first, in
Sect. S-1, some relevant concepts and methodology are
being discussed and tested using a conventional cohesive
zone model of ordinary fracture. Then, in Sect. S-2, these
concepts and tools are generalized for frictional rupture
along interfaces described by generic friction constitutive
relations, and additional details about their application
in Sect. III of the manuscript are briefly provided. The
numerical tools and the generic interfacial constitutive re-
lation (including the material parameters) are presented
in [S1, S2].

S-1. EDGE SINGULARITY AND ENERGY

BALANCE IN A CONVENTIONAL COHESIVE

ZONE MODEL OF ORDINARY FRACTURE

Our goal here is to first develop the procedure for
extracting the near-edge singular fields in a simpler
case, where there is no residual stress (i.e. ordinary
fracture), where the Linear Elastic Fracture Mechanics
(LEFM) singularity is regularized on a small lengthscale
(i.e. proper scale separation is realized) and the frac-
ture energy Gc is prescribed. This is achieved by the
well-known framework of cohesive zone crack models, at-
tributed to Dugdale [S3] and Barenblatt [S4], which be-
came very popular in the numerical modeling of dynamic
fracture (see, for example, [S5, S6]). Within this frame-
work, we employ a linear slip-weakening cohesive law in
which the strength of the interface τ str linearly reduces
to zero over a characteristic slip displacement δc

τ str(x, t) = τc {1− δ(x, t)/δc} , (S1)

where τc is the failure strength (determining the rupture
peak stress), δ(x, t) is the slip displacement, and {ξ}=ξ
if ξ > 0 and 0 otherwise (ξ is a dummy variable used
to define the function {·} in Eq. (S1)). The linear slip-
weakening law of Eq. (S1) corresponds to a prescribed
value of the fracture energy

Gc =

∫ δc

0

τdδ =
1

2
τcδc . (S2)

The spectral boundary integral method under mode-
III symmetry (where the basic object is the out-of-plane
displacement field at the interface, uz(x, y = 0, t), see
manuscript and references therein for details) can be cou-
pled to Eq. (S1) (i.e. the latter replaces the friction law
used in the manuscript) to generate propagating rup-
ture fronts. In this context, rupture is nucleated at
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FIG. S1. Space-time diagram of the dynamic mode-III rup-
ture event described in the text. The yellow region corre-
sponds to the broken interface left behind the propagating
rupture edges, the narrow red region corresponds to the co-
hesive zone and the black region corresponds to the intact
interface. The blue line marks the instant at which the snap-
shots of the stress and slip velocity fields in Fig. S2a are taken.
(inset) The time evolution of the rupture speed cr as function
of its size L.

the center of an interface at rest under a uniform shear
stress τd, where 0< τd < τc, by progressively increasing
an originally infinitesimal seed crack toward a critical
size L = LG. The latter, known as the Griffith criti-
cal length [S7, S8], is given by (see also Eq. (6) in the
manuscript)

LG =
4µGc

π τ2d
, (S3)

for mode-III cracks. In Fig. S1, we present the resulting
dynamics that feature a crack that progressively accel-
erates toward cs, the maximal admissible rupture speed
for mode-III symmetry.
The instantaneous rate of dissipated energy associated

with the propagation of one rupture edge (recall that
there are two of these) can be obtained as [S6]

Ėdiss(t) =

∫ 1

2
W

0

τ(x, t) v(x, t) dx , (S4)

where W is the system size. The integral attains a finite
contribution only inside the well-defined cohesive zone
near the propagating rupture edge, where both τ(x, t)
and v(x, t) are non-zero. The cohesive zone (also termed
fracture process zone in ordinary fracture), which cor-
responds to the region where the stress τ(x, t) drops
from the peak stress (failure strength) τc to 0, is marked
by the red-shaded region in Fig. S2a. A snapshot of
the stress τ(x, t) and slip velocity v(x, t) distributions
near the propagating rupture edge are also presented in
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Fig. S2a (and see also Fig. S1). The fracture energy, de-
fined in Eq. (S2), is the energy dissipated per unit crack
extension dL

Gc(t) =
d

dL
Ediss(t) =

dEdiss

dt

/dL

dt
=

Ėdiss(t)

cr(t)
, (S5)

which is constant for the slip-weakening model used here
(see Fig. S2b).

Standard fracture theory predicts that close to the
propagating rupture edges, we have the famous square
root singular fields [S8]

τ(r=xr−x, θ=0, cr)− τres ≃
KIII

√

2π(xr − x)
(S6)

and

µαs(cr)

2cr
v(r=x−xr, θ=π, cr) ≃

KIII
√

2π(x− xr)
, (S7)

where (r, θ) is a polar coordinate system moving with

the rupture edge, αs(cr)=
√

1− c2r/c
2
s, xr is the effective

edge location and KIII is the mode-III stress intensity
factor. We subtracted the residual stress τres from the
frictional stress field such that the shifted stress field
vanishes behind the rupture edge and normalized the
slip velocity field such that the left-hand-sides of both
Eqs. (S6)-(S7) attain comparable values; note that for
the slip-weakening model used here we have τres = 0,
and it makes no difference, but in general one may have
τres>0 (also in the framework of slip-weakening models),
see Sect. S-2. In addition, we used v=2u̇z since v is the
slip velocity, not the particle (mass) velocity u̇z. Finally,
as is evident from the right-hand-sides of both Eqs. (S6)-
(S7), the normalized slip velocity v and frictional stress τ
fields are symmetric functions relative to xr (i.e. it is the
very same function of |x−xr|), though the spatial ranges
in which the singular form is valid differ for the two fields.
This issue will be discussed below, where we explain how
the two free parameters in Eqs. (S6)-(S7) — xr and KIII

— are determined. We stress that the proper normaliza-
tion and shift used in Eqs. (S6)-(S7) allow us to consider
the stress and slip velocity fields on equal footing.

The square root singularity is associated with a finite
energy flux into the edge region, the so-called energy
release rate G, which for mode-III symmetry takes the
form [S8]

G(t) =
1

αs

K2
III

2µ
. (S8)

Our goal now is to extract the stress intensity factor from
the singular fields of Eqs. (S6)-(S7), to use Eq. (S8) to
calculate G and to check whether the near-edge energy
balance G=Gc is satisfied. As all of the assumptions of
conventional fracture theory are satisfied by the model,
the energy balance equation should be satisfied.
We start by estimating the stress intensity factor from

the near-edge stress and slip velocity distributions shown

in Fig. S2a. That is, we fit the normalized and shifted
near-edge stress and slip velocity fields to the singular
form in Eqs. (S6)-(S7), with xr and KIII as the two free
parameters. To make the procedure well defined, we also
need to specify the spatial range over which the fits are
performed. In determining the spatial range of the fit of
the two fields, several physical considerations are invoked;
first, it is clear that the fits cannot include the regions
where the fields (cf. the examples in Fig. S2a) attain their
peak values as these are associated with the regulariza-
tion of the singular behavior (the cohesive zone). Second,
the fitting ranges cannot extend too far away from the
edge region as the fields there include also non-singular
contributions. Finally, as the overall variability of the
stress field is smaller compared to that of the slip veloc-
ity field, we expect the singular region to be narrower for
the former. We employ a nonlinear least-squares regres-
sion fitting procedure [S9] to determine the best estimates
for xr and KIII, and selected the fitting ranges to be as
large as possible within the constraints imposed by the
physical considerations just stated.

The resulting fits, i.e. the right-hand-sides of Eqs. (S6)-
(S7), are superimposed on the normalized slip velocity v
and frictional stress τ fields in Fig. S2a (dashed lines).
To highlight the spatial fitting ranges used, we replot the
results in Fig. S2a on a double logarithmic scale against
|x − xr|/W in the inset (note that due to the symmetry
of the singular form on the right-hand-sides of Eqs. (S6)-
(S7), we have now a single fit that describes the two fields
over different spatial ranges). The inset shows that the
spatial fitting ranges for the two fields are different, that
the range for the slip velocity field is wider than the one
for the frictional stress field and that the peak regions are
properly excluded. Finally, we verified that the values
of xr and KIII are robust against changes in the spatial
fitting ranges within the stated constraints.

The extracted value of KIII has been used to calculate
the energy release rate G according to Eq. (S8). Then we
applied the fitting procedure to the whole rupture prop-
agation history and the a priori known value of Gc in
Eq. (S2) has been used to plot in Fig. S2b G/Gc as a
function of L/LG, where L is the rupture length. The
results strongly support the expected relation G/Gc =1
and hence also validate our fitting procedure. Note that
some deviation from G/Gc = 1 is observed, reflecting
some uncertainly in the singular behavior, even in simple
slip-weakening models. Finally, for completeness, we also
plot in Fig. S2b Ėdiss(t)/cr(t) of Eq. (S5), normalized by
Gc, which indeed equals unity throughout the rupture
propagation process, as expected. The same fitting pro-
cedure is applied in the manuscript to the frictional rup-
ture dynamics of interfaces described by rate-and-state
friction, as discussed next.
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FIG. S3. A snapshot of the properly normalized (see legend)
stress field τ(x, t) (left y-axis) and v(x, t)φ(x, t)/D (right y-
axis) corresponding to the solution presented in Fig. 3a in the
manuscript, where the y-axis is truncated to allow the prop-
erties of the fields near the rupture edge to be visible. (inset)
v(x, t)φ(x, t)/D near the rupture edge without truncating the
y-axis.

terized by a much larger lengthscale. We consequently
proposed that the former should be associated with the
effective fracture energy Gc.

In order to formalize this idea and to make the extrac-
tion of Gc quantitative, we focus on the dimensionless
combination v(x, t)φ(x, t)/D, which is shown in Fig. S3
and which according to Eq. (8) in the manuscript con-
trols the evolution of the structural state of the inter-
face φ(x, t). The latter is known to determine the real
contact area Ar(x, t)∼1 + b log[1 + φ(x, t)/φ∗] of the in-
terface [S12] (for the definition of the parameters b and
φ∗, and their values used here, see [S1, S2]). Hence, it is
directly related to the rupture process, involving a tran-
sition from an initial value of Ar ahead of the rupture
front to a significantly lower value behind it (see the in-
set of Fig. S4). This transition corresponds to a transi-
tion between vφ/D=1 ahead of the rupture front, with
a very small v and hence a large φ, and vφ/D = 1 be-
hind it, with a large v and hence a much smaller φ. In
between, vφ/D is expected to attain significantly larger
values. This physical picture is demonstrated in the inset
of Fig. S3, which corresponds to the rupture front shown
in Fig. 3a in the manuscript.

The two-step nature of the approach of vφ/D to its
steady-state is revealed in the main panel of Fig. S3,
which presents a zoomed in version of the inset. The
figure reveals that after the huge peak in vφ/D, which oc-
curs on a small lengthscale near the rupture edge, vφ/D
undershoots unity and then approaches unity slowly from
below, on a significantly larger lengthscale. We conse-
quently attribute the small lengthscale weakening pro-
cess to the near-edge dissipation Gc, i.e. to the effec-
tive fracture energy, where the additional dissipation as-
sociated with the larger lengthscale is discussed in the
manuscript. In quantitative terms, this picture implies
that Gc is estimated through the dissipation correspond-

ing to v(x, t)φ(x, t)/D > 1, as formulated in Eq. (10) in
the manuscript.
The latter criterion is demonstrated in Fig. S3, where

the frictional stress τ(x, t) of Fig. 3a in the manuscript
is superimposed on v(x, t)φ(x, t)/D, to exactly corre-
spond to the change in the relaxation behavior of τ(x, t)
towards τres that was discussed above. This criterion
is also in line with recent physics-based interpretations
of rate-and-state friction formulations [S12–S14]. Fi-
nally, for completeness, we present in Fig. S4 a snap-
shot of the spatial distribution of the real contact area
Ar(x, t)∼1 + b log[1 + φ(x, t)/φ∗] [S11].
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FIG. S4. A snapshot of the real contact area Ar(x, t)∼ 1 +
b log[1 + φ(x, t)/φ∗] (blue line, left y-axis) corresponding to
v(x, t)φ(x, t)/D of Fig. S3, which is reproduced here (orange
line, right y-axis). The real contact area also exhibits slow
relaxation to its asymptotic value behind the rupture edge.
(inset) A full scale plot of Ar(x, t)∼ 1 + b log[1 + φ(x, t)/φ∗]
near the rupture edge, directly demonstrating that the latter
is associated with a reduction of the real contact area.

We note that the estimation of Gc through the dissi-
pation corresponding to the criterion v(x, t)φ(x, t)/D>1
appears to be consistent with available analytic approx-
imations for the effective fracture energy [S15–S17]. In
particular, the expression

Gc =
Dσ

2

∂f(|v|, φ)
∂ log (φ)

[log(vc/vbg)]
2

(S10)

has been proposed in [S17]. Here ∂f(|v|, φ)/∂ log (φ) is
the aging coefficient (f(|v|, φ) is the friction law intro-
duced in Eq. (7) in the manuscript), vbg corresponds to
the steady-state velocity in the stick state (prior to the
arrival of the rupture front) and vc is the slip velocity
far behind the rupture front. We estimate vbg as the
leftmost intersection point in Fig. 1b in the manuscript,
i.e. vbg ≈ 10−7m/s, and vc as the rightmost intersec-
tion point with the effective steady-state friction curve,
i.e. vc ≈ 10−2m/s. Using the parameters used in this
work (see [S2]), i.e. D = 0.5× 10−6m, σ = 106Pa and
∂f(|v|, φ)/∂ log (φ) = 0.021 (the latter equals bf0 in the
notation of [S2]), and plugging everything in Eq. (S10),
we obtain Gc≈0.7J/m2. The latter is in reasonably good
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agreement with Gc of Fig. 3b in the manuscript. In or-
der to further substantiate this agreement, future work
should extend the comparison by systematically varying
the parameters involved.

To conclude, the procedure to extract the singular con-

tribution of near-edge fields and to test the energy bal-
ance relation G=Gc presented in Sect. S-1 is applied in
the manuscript to rate-and-state frictional interfaces. In
this case, τd is replaced by the stress drop ∆τ and Gc

is estimated from the interfacial dynamics according to
Eq. (10) in the manuscript, as explained in detail here.
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