000873491 001__ 873491
000873491 005__ 20210130004439.0
000873491 0247_ $$2doi$$a10.1103/PhysRevX.9.041043
000873491 0247_ $$2Handle$$a2128/24136
000873491 0247_ $$2altmetric$$aaltmetric:71208474
000873491 0247_ $$2WOS$$aWOS:000498884000002
000873491 037__ $$aFZJ-2020-00768
000873491 082__ $$a530
000873491 1001_ $$00000-0003-1109-0200$$aBarras, Fabian$$b0
000873491 245__ $$aEmergence of Cracklike Behavior of Frictional Rupture: The Origin of Stress Drops
000873491 260__ $$aCollege Park, Md.$$bAPS$$c2019
000873491 3367_ $$2DRIVER$$aarticle
000873491 3367_ $$2DataCite$$aOutput Types/Journal article
000873491 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580482234_16722
000873491 3367_ $$2BibTeX$$aARTICLE
000873491 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873491 3367_ $$00$$2EndNote$$aJournal Article
000873491 520__ $$aThe process of frictional rupture, i.e., the failure of frictional systems, abounds in the technological and natural world around us, ranging from squealing car brake pads to earthquakes along geological faults. A general framework for understanding and interpreting frictional rupture commonly involves an analogy to ordinary crack propagation, with far-reaching implications for various disciplines from engineering tribology to geophysics. An important feature of the analogy to cracks is the existence of a reduction in the stress-bearing capacity of the ruptured interface, i.e., of a drop from the applied stress, realized far ahead of a propagating rupture, to the residual stress left behind it. Yet, how and under what conditions such finite and well-defined stress drops emerge from basic physics are not well understood. Here, we show that for a rapid rupture a stress drop is directly related to wave radiation from the frictional interface to the bodies surrounding it and to long-range bulk elastodynamics and not exclusively to the physics of the contact interface. Furthermore, we show that the emergence of a stress drop is a transient effect, affected by the wave travel time in finite systems and by the decay of long-range elastic interactions. Finally, we supplement our results for rapid rupture with predictions for a slow rupture. All of the theoretical predictions are supported by available experimental data and by extensive computations. Our findings elucidate the origin of stress drops in frictional rupture; i.e., they offer a comprehensive and fundamental understanding of why, how, and to what extent frictional rupture might be viewed as an ordinary fracture process.
000873491 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000873491 588__ $$aDataset connected to CrossRef
000873491 7001_ $$00000-0002-1288-3563$$aAldam, Michael$$b1
000873491 7001_ $$00000-0002-2495-8841$$aRoch, Thibault$$b2
000873491 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b3$$eCorresponding author
000873491 7001_ $$00000-0001-8821-1635$$aBouchbinder, Eran$$b4
000873491 7001_ $$00000-0002-1728-1844$$aMolinari, Jean-François$$b5
000873491 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.9.041043$$gVol. 9, no. 4, p. 041043$$n4$$p041043$$tPhysical review / X Expanding access X$$v9$$x2160-3308$$y2019
000873491 8564_ $$uhttps://juser.fz-juelich.de/record/873491/files/PhysRevX.9.041043.pdf$$yOpenAccess
000873491 8564_ $$uhttps://juser.fz-juelich.de/record/873491/files/PhysRevX.9.041043.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873491 909CO $$ooai:juser.fz-juelich.de:873491$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873491 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
000873491 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873491 9141_ $$y2019
000873491 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873491 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873491 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2017
000873491 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2017
000873491 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873491 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873491 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873491 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873491 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873491 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873491 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000873491 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873491 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873491 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873491 920__ $$lyes
000873491 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000873491 980__ $$ajournal
000873491 980__ $$aVDB
000873491 980__ $$aUNRESTRICTED
000873491 980__ $$aI:(DE-Juel1)PGI-2-20110106
000873491 9801_ $$aFullTexts