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The process of frictional rupture, i.e., the failure of frictional systems, abounds in the technological and

natural world around us, ranging from squealing car brake pads to earthquakes along geological faults.

A general framework for understanding and interpreting frictional rupture commonly involves an analogy

to ordinary crack propagation, with far-reaching implications for various disciplines from engineering

tribology to geophysics. An important feature of the analogy to cracks is the existence of a reduction in the

stress-bearing capacity of the ruptured interface, i.e., of a drop from the applied stress, realized far ahead of

a propagating rupture, to the residual stress left behind it. Yet, how and under what conditions such finite

and well-defined stress drops emerge from basic physics are not well understood. Here, we show that for a

rapid rupture a stress drop is directly related to wave radiation from the frictional interface to the bodies

surrounding it and to long-range bulk elastodynamics and not exclusively to the physics of the contact

interface. Furthermore, we show that the emergence of a stress drop is a transient effect, affected by the

wave travel time in finite systems and by the decay of long-range elastic interactions. Finally, we

supplement our results for rapid rupture with predictions for a slow rupture. All of the theoretical

predictions are supported by available experimental data and by extensive computations. Our findings

elucidate the origin of stress drops in frictional rupture; i.e., they offer a comprehensive and fundamental

understanding of why, how, and to what extent frictional rupture might be viewed as an ordinary

fracture process.

DOI: 10.1103/PhysRevX.9.041043 Subject Areas: Geophysics, Mechanics, Soft Matter

I. BACKGROUND AND MOTIVATION

Rapid slip along interfaces separating bodies in frictional
contact is mediated by the spatiotemporal dynamics of
frictional rupture [1,2]. Frictional rupture is a fundamental
process of prime importance for a broad range of physical
systems; e.g., it is responsible for squealing in car brake
pads [3], for bowing on a violin string [4], and for
earthquakes along geological faults [5–7], to name just a
few well-known examples. The essence of frictional rupture
propagation is that a state of relatively high slip rate (the
rate of interfacial shear displacement discontinuity) behind
the rupture edge propagates into a low or vanishing slip-rate
state ahead of it; cf. Fig. 1. As such, frictional rupture

appears to be essentially similar to ordinary tensile (open-
ing) cracks, where a finite tensile displacement disconti-
nuity (broken material) state behind the crack edge
propagates into a zero tensile displacement discontinuity
(intact material) state ahead of it [8].
There is, however, an important and fundamental differ-

ence between frictional rupture and ordinary tensile cracks
that manifests itself in the stress states associated with these
two processes. A tensile crack, i.e., a crack subjected to
opening forces, is composed of surfaces that cannot support
stress, so the stress behind its edge vanishes. Consequently,
tensile (opening) crack propagation is a process in which
the applied stress ahead of the crack edge drops to zero
behind it. This stress drop, which accompanies tensile crack
propagation, has dramatic implications. Most notably, the
loss of stress-bearing capacity along the crack surfaces is
compensated by a large concentration of deformation and
stress near the crack edge, oftentimes in a way that mimics
a mathematical singularity, whose intensity increases with
increasing stress drops [8]. Frictional rupture is different
from tensile cracks, because the finite frictional interaction
between the two bodies in contact behind the rupture edge
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generically implies that the stress there cannot drop to zero
but rather remains finite.
The close relations between frictional rupture and tensile

cracks can be maintained if, as is widely assumed, the stress
behind the frictional rupture edge—the residual stress
τres—is well defined and is generically smaller than the
far-field stress τd that is required to drive a rupture.
Moreover, the residual stress τres is generally assumed to
be an intrinsic interfacial property of the slipping contact
interface, typically related to the kinetic friction coefficient.
Under these assumptions, a finite stress drop Δτ≡ τd −

τres > 0 exists, and effective cracklike properties of fric-
tional rupture, e.g., edge singularity, are expected to
emerge. These assumptions have been adopted in an
extremely broad range of theoretical and numerical studies
[9–27], and their implications have been consistent with
geophysical observations [26,28] and have been confirmed
in some recent laboratory experiments [29–36]. In fact,
stress drops are among the few remotely observable
parameters in earthquake science, providing a key link
to the frictional properties of faults, which can be only
indirectly inferred.
Yet, to the best of our knowledge, currently there is no

basic understanding of how and under what conditions the
effective cracklike behavior of frictional rupture emerges
from fundamental physics. More specifically, there is a
need to understand what the physical origin of a finite stress
dropΔτ > 0 is and under what conditions it emerges. Here,
we address these basic questions; first, we show that for a
rapid rupture a finite and well-defined stress drop is not an
interfacial property, as is widely assumed, but rather it is
directly related to wave radiation from the frictional inter-
face to the bodies surrounding it (the so-called radiation
damping effect [37–40]) and to long-range bulk elastody-
namic interaction effects. Second, we show that the
emergence of a stress drop is a finite-time effect, limited
by the wave travel time in finite systems. Third, we show
that for a slow rupture, i.e., a rupture that is significantly
slower than the elastic wave speeds [41–44], stress drops
are transiently controlled by the long-range quasistatic

elasticity of the bodies surrounding the frictional interface.
A reanalysis of very recent experimental results, reported
by two different experimental groups, provides strong
support to our theoretical predictions, for both a rapid
and a slow rupture. All in all, our findings elucidate the
origin of stress drops in frictional rupture; i.e., they offer a
comprehensive and fundamental understanding of why,
how, and to what extent frictional rupture might be viewed
as an ordinary fracture process.

II. THE PHYSICAL ORIGIN AND MAGNITUDE

OF THE STRESS DROP ASSOCIATED

WITH FRICTIONAL RUPTURE

The starting point for our discussion is a physically
motivated interfacial constitutive law, i.e., a relation
between the dynamical and structural variables that char-
acterize a frictional interface and the frictional resistance
stress τ [45]. A frictional interface is formed when two
bodies come into contact. Each of them satisfies its
own continuum momentum balance equation ρüðr; tÞ ¼
∇ · σðr; tÞ, where ρ is the mass density, u and r ¼ ðx; yÞ (in
two dimensions) are the displacement and position vector
fields, respectively, and σ is the stress tensor field (a
superposed dot represents a time derivative). σ in each
body is related to u through a bulk constitutive law (i.e., a
constitutive law that characterizes the bodies forming the
interface), oftentimes Hooke’s law of linear elasticity,
adopted below as well. Note that body forces are neglected
in the momentum balance equation.
The interfacial constitutive law involves three bulk

quantities evaluated at the interface located at y ¼ 0:
(i) the slip rate or velocity vðx; tÞ≡ _uxðx; y ¼ 0þ; tÞ−
_uxðx; y ¼ 0−; tÞ, where � correspond to the upper and
lower bodies, respectively, (ii) the shear stress
σxyðx; y ¼ 0; tÞ, that is balanced by the frictional stress,

τðx; tÞ ¼ σxyðx; y ¼ 0; tÞ and (iii) the normal stress

σðx; tÞ≡ −σyyðx; y ¼ 0; tÞ. A large body of evidence

accumulated in the past few decades indicates that the
interfacial constitutive law must also involve a set of
nonequilibrium order parameters fϕig, sometimes termed
internal-state fields, that represent the structural state of the
interface and encode its history [45–52]. In a minimal
formulation, adopted in numerous studies [38,39,53–58], a
single internal-state field ϕðx; tÞ is used. This assumption is
adopted here, without loss of generality.
The interfacial constitutive law, at any position x along

the interface and at any time t, is described by the following
local relation:

τ ¼ σsgnðvÞfðjvj;ϕÞ; ð1Þ

which must be supplemented with a dynamical equation for
the evolution of ϕ. Extensive evidence indicates that ϕ
physically represents the age or maturity of the contact
[45,47–52] and that its evolution takes the form

FIG. 1. A schematic representation of the spatial slip-rate v
profile of a frictional rupture propagating at a velocity cr from left
to right. A slipping or sliding state with a relatively high slip
velocity v > 0 characterizes the interface behind the propagating
rupture edge, and a low or vanishing slip-rate state, v ≈ 0,
characterizes the interface ahead of it.
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_ϕ ¼ g

�

jvjϕ

D

�

; ð2Þ

with gð1Þ ¼ 0 and where ϕ is of time dimension. The
characteristic slip displacement D controls the transition
from a stick state v ≈ 0, with a characteristic structural
state ϕ ¼ ϕ0, to a steadily slipping or sliding state v > 0,
with ϕss ¼ D=v. The precise functional form of gð·Þ [with
gð1Þ ¼ 0] plays no role in what follows.
The function fðjvj;ϕss ¼ D=vÞ ¼ τssðvÞ=σ, under

steady-state sliding conditions and a controlled normal
stress σ, has been measured over a broad range of slip rates
v for many materials [45]. Together with general theoretical
considerations [59], it is now established that the steady-
state frictional stress τssðvÞ is generically N shaped, as
shown in Fig. 2(a). Consider then a frictional system driven
by a shear stress τd, which is larger than the minimum of the
τssðvÞ curve; cf. Fig. 2(a). What are the generic properties
of frictional rupture that might emerge under these
conditions?
As explained in Sec. I, frictional rupture is a propagating

spatiotemporal object that features a relatively high slip
state v > 0 behind its edge and a stick (no or slow slip)
v ≈ 0 state ahead of it, as shown in Fig. 1. This spatio-
temporal dynamical process can be directly related to
Fig. 2(a), where the driving stress τd intersects the τssðvÞ
curve at three points. The leftmost intersection point
features an extremely small slip velocity v ≈ 0, which
corresponds to the state ahead of the rupture edge. We
stress that, in general, the state of the interface ahead of the
rupture edge may be far from steady state, and the results to
follow are largely independent of its detailed properties.
The rightmost intersection point features a relatively large
slip velocity v > 0, which corresponds to the state behind
the rupture edge. The transition between these two states

takes place in the edge region and is controlled by _ϕ in
Eq. (2) and by spatiotemporal bulk dynamics. In this
transition region, the slip velocity v also goes through
the intermediate intersection point, which is not a stable
fixed point as the other two. The crucial observation is that
the stress behind a steadily propagating frictional rupture is
τd; i.e., the residual stress equals the driving stress,
τres ¼ τd. This observation implies that we expect no stress
drop to emerge at all, Δτ ¼ τd − τres ¼ 0, and conse-
quently no cracklike behavior.
In many studies available in the literature, a steady-state

friction curve τssðvÞ that does not feature a minimum is
adopted [38,39,62–64]. We consequently discuss here such
a no-minimum friction curve and plot an example of it in
Fig. 2(a). In this case, the driving stress τd behind the
rupture edge cannot be balanced by the friction stress, and
the slip velocity in this region is expected to continuously
accelerate. As such, we cannot expect a well-defined
steady-state stress drop to emerge, though the stress will
definitely drop below τd behind the rupture edge.

The discussion above, for both the N-shaped and the no-
minimum steady-state friction curves, seems to lead to the
quite remarkable conclusion that based on basic physics
considerations we expect no finite and well-defined steady-
state stress drops to emerge at all in the context of friction
rupture and, hence, no cracklike behavior as well. This
conclusion appears to be in sharp contrast to ample
evidence indicating the existence of finite and well-defined
steady-state stress drops in various frictional systems
[1,29,30,32,33,35,65,66]. How can one reconcile the two
apparently conflicting conclusions?

FIG. 2. (a) A schematic representation of the steady-state
friction stress τssðvÞ, normalized by a constant normal stress σ,
versus the slip rate v (solid brown line). The curve has a genericN
shape [59], with a maximum at an extremely low v and a
minimum at an intermediate v. The horizontal line represents the
driving stress τd, which intersects the N-shaped steady-state
friction curve at three points; the leftmost and rightmost ones are
stable fixed points, while the intermediate one is an unstable one.
Also shown is a steady-state friction curve without the minimum
(dash-dotted orange line) [46,60,61]. This no-minimum steady-
state friction curve lacks the rightmost intersection point of the
solid brown curve. (b) The effective steady-state friction curve
(dashed brown line), obtained by adding ðμ=2csÞv (with μ ¼
9 GPa and cs ¼ 2739 m=s) to the solid brown line of (a),
together with a copy of the solid brown line of (a) itself. The
intersection of the dashed brown line with the horizontal τd line
[the same as in (a)] is described by Eq. (4), and the stress drop Δτ
of Eq. (5) is marked by the black double arrow. (c) The same as
(b), but for the no-minimum curve (dash-dotted orange line)
of (a).
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To address this question, let us write down in more
detail the general expression for interfacial shear stress
σxyðx; y ¼ 0; tÞ, valid also out of the steady state, when a

constant driving stress τd is applied at the far boundaries of
the systems, say, at y ¼ �H (H is the height of each of
the two bodies in contact). For bulk linear elastodynamics,
we have σxyðx; y ¼ 0; tÞ ¼ τd þ s̃ðx; tÞ, where s̃ðx; tÞ is a

spatiotemporal integral that quantifies the long-range (in
both space and time) elastodynamic interaction between
different parts of the interface [67–69]. Under strict
homogeneous steady-state conditions, we have s̃ðx;tÞ→0

and, consequently, σxyðx; y ¼ 0; tÞ → τd, which corre-

sponds to the rightmost intersection point in Fig. 2(a)
attained far behind the rupture edge (see the discussion
above). At finite times, before strict steady-state conditions
are attained, the spatiotemporal integral term s̃ðx; tÞ makes
a finite contribution to σxyðx; y ¼ 0; tÞ, which quantifies the
deviation from the steady state.
Under these conditions, and, in particular, for times in

which information regarding the evolution of the slip
velocity vðx; tÞ relative to some initial or reference slip
velocity v0 does not have enough time to propagate to
the boundaries at y ¼ �H and back to the interface, the
spatiotemporal integral term s̃ðx; tÞ can be decomposed into
two contributions; one is a local contribution of the form
ðμ=2csÞ½vðx; tÞ − v0�, where μ is the linear elastic shear
modulus and cs is the shear wave speed, and the other is a
nonlocal (in space and time) contribution sðx; tÞ [67–69].
This decomposition is valid for times shorter than
OðH=csÞ, before wave interaction with the boundaries is
possible, and for these times the interfacial shear stress
takes the form [55,57,67–70]

σxyðx; y ¼ 0; tÞ ¼ τd −
μ

2cs
½vðx; tÞ − v0� þ sðx; tÞ: ð3Þ

In many studies available in the literature, the idealized
infinite system limitH → ∞ is considered, for which Eq. (3)
is valid at all times. The term ðμ=2csÞ½vðx; tÞ − v0� physi-
cally represents wave radiation from the interface to the
bodies that form it and is, therefore, known as the radiation-
damping term [37–40]. It is associated with “damping”
because, from the perspective of the interface, it acts as a
viscous stress with μ=2cs being the effective viscosity. This
term makes an important contribution to stress drops in
frictional rupture, as is shown next.
Consider a point along a frictional interface that is

initially located ahead of a propagating frictional rupture
and whose slip velocity is v ≈ 0, which represents v0 in
Eq. (3). When the frictional rupture goes through this point,
the stress and slip velocities vary significantly. Suppose
then that the system height H is sufficiently large such that
the spatiotemporal integral decays once the rupture goes
sufficiently far ahead, sðx; tÞ → 0, but the radiation damp-
ing contribution is still valid (i.e., shear waves do not have

enough time to propagate to the far boundaries and back).
Under these conditions, the slip velocity vres at the spatial
point under consideration, now far behind the frictional
rupture, is determined by the shear stress balance σxy ¼ τ

and satisfies

τssðv
0
resÞ þ

μ

2cs
v0res ≃ τd; ð4Þ

where v0res ≫ v0 and sðx; tÞ→ 0 are used. Note that

the superscript “0” in v0res represents the fact that it is
the theoretically predicted residual slip velocity under the
assumption that sðx; tÞ ¼ 0 far behind the propagating
rupture front. The residual stress at this point takes the

form τres ¼ τd − ðμ=2csÞv
0
res, and, consequently, a finite

stress drop of magnitude

Δτ ≃
μ

2cs
v0res ð5Þ

is expected to emerge on times shorter than OðH=csÞ.
A geometric representation of Eqs. (4) and (5) is shown

in Fig. 2(b) for the N-shaped τssðvÞ and in Fig. 2(c) for the
no-minimum τssðvÞ, both shown in Fig. 2(a). In Figs. 2(b)
and 2(c), the left-hand-side of Eq. (4) τssðvÞ þ ðμ=2csÞv is
regarded as an effective steady-state curve and is plotted
by a dashed line. The radiation-damping contribution
ðμ=2csÞv in Fig. 2(b) shifts the location of the effective
(finite-time) steady-state slip rate to lower rates [compared
to the strict steady state represented by the rightmost
intersection point in Fig. 2(a)]. In Fig. 2(c), it gives rise
to an effective (finite-time) steady-state slip rate, which
simply does not exist for the no-minimum curve in
Fig. 2(a). This result shows that Eq. (5) is valid independ-
ently of the properties of τssðvÞ. Note that relevant solutions
v0res to Eq. (4) exist only if τd is larger than the effective
(finite-time) minimum of the steady-state friction curve,
as is highlighted in Figs. 2(b) and 2(c). The very same
condition plays a central role in the analysis of Ref. [39],
where the conditions for rupture mode selection (self-
healing pulses versus cracklike) are extensively discussed.
Somewhat related issues are also discussed in Ref. [71].
We note that, once Δτ is assumed to exist, the relation in

Eq. (5) between Δτ and vres as given quantities is a known
elastodynamic relation [72], which has previously received
some experimental support (e.g., see Fig. 8 in Ref. [73])
and is strongly supported by recent experimental data we
have extracted from recent experimental works [35,36]; see
Sec. IV. To the best of our knowledge, however, none of
these works (except for Ref. [39], as mentioned above)
predict the residual slip velocity vres to emerge from the
combined effect of the steady-state friction curve τssðvÞ and
of the radiation-damping term ðμ=2csÞv as predicted in
Eq. (4), and none of them interpret Eq. (5) as a major

FABIAN BARRAS et al. PHYS. REV. X 9, 041043 (2019)

041043-4



contribution to stress drops Δτ in frictional rupture. In the
context of a quasistatic fault model of Ref. [74], the
radiation-damping term ðμ=2csÞv is added in an ad hoc

manner in order to avoid unbounded slip velocities from
emerging during frictional instabilities in the quasistatic
formulation. It is noted in this context [74] that the effective
viscosity μ=2cs affects the magnitude of the stress drop Δτ

when τssðvÞ has no minimum [cf. Fig. 2(c)]; nevertheless,
the general physical picture in which the radiation-damping
term significantly contributes to stress drops in frictional
rupture, independently of the properties of τssðvÞ, has not
been discussed.
When the radiation-damping term ðμ=2csÞv in Eq. (4)

does not faithfully represent the physics of a given system,
no well-defined finite stress drop is expected to accompany
a rapid frictional rupture. This situation can happen in two
generic cases; first, in the limit of thin bodiesH → 0, where
essentially there is no bulk to radiate energy into, the
radiation-damping term ðμ=2csÞv simply does not exist to
begin with. In this case, frictional rupture exists, but it is not
accompanied by any stress drop, as shown previously in
Ref. [75] and here in Fig. 6. Second, the radiation-damping
term ðμ=2csÞv, which exists at relatively short times
[shorter than OðH=csÞ], is expected to vanish in the long
time limit t ≫ H=cs. This limit can be probed by perform-
ing experiments or simulations with long enough systems
for long enough times. Indeed, simulations of effectively
long systems yield rupture fronts with no stress drop; see
Fig. 6(a) in Ref. [76] and details therein. Finally, note
that the radiation-damping term ðμ=2csÞv is expected to
decrease to zero in discrete steps corresponding to eachwave
reflection from the system’s boundaries. Experimental evi-
dence for the stepwise nature of the decrease in the radiation-
damping term (associated with discrete wave reflections) is
discussed below.

A. A perturbative approach for rapid

rupture and the slow rupture limit

The main theoretical prediction in Eqs. (4) and (5) is
obtained under the assumption that the spatiotemporal
integral term sðx; tÞ in Eq. (3) vanishes well behind the
propagating rupture. While this idealized assumption is
physically sensible and is reasonably supported by simula-
tional and experimental results for a rapid rupture discussed
below, the long-range spatiotemporal nature of sðx; tÞ may
suggest that it does not strictly vanish in many realistic
situations. Consequently, our goal here is to understand

how v0res and Δτ of Eqs. (4) and (5) change in the presence
of a finite, yet small, sðx; tÞ.
To address this question, we denote the typical value of

sðx; tÞ at the tail of a rapidly propagating rupture front by s
and consider a perturbed solution of the form v ¼ v0res þ
δvres. We then expand Eq. (3), which in the present context
takes the form ΔτðvÞ ¼ ðμ=2csÞv − s, to linear order in
δvres (it is already linear in s) to obtain

δvres

v0res
¼ 2

cs

v0res

s

μ
ð1þ ϵÞ−1; ϵ≡2

cs

v0res

σ

μ

∂fss

∂ logðv0resÞ
;

ΔτþδðΔτÞ¼
μ

2cs
v0res

�

1− ϵ
δvres

v0res

�

: ð6Þ

Note that the internal state field ϕ is assumed above to be
slaved to v and that fssðvÞ ¼ τssðvÞ=σ is the steady-state
friction coefficient.
Equation (6) reveals an interesting result; while both v0res

and Δτ attain corrections that are linear in s, as expected
from a linear perturbation approach, the actual smallness of
the corresponding corrections may be quite different due to

the appearance of ϵ. ϵ is a product of cs=v
0
res ≫ 1, σ=μ ≪ 1,

and jf∂fss=½∂ logðv
0
resÞ�gj ≪ 1 [5,45], where the latter two

contributions are expected to dominate the first one, leading
to jϵj ≪ 1. Consequently, while ϵ is expected to have a
negligible effect on δvres, due to the appearance of the

factor ð1þ ϵÞ−1, it implies that δðΔτÞ=Δτ is a factor of ϵ

smaller than δvres=v
0
res. We thus expect the stress dropΔτ to

be far less sensitive to finite values of sðx; tÞ compared to
the residual slip velocity vres. This difference is demon-
strated below.
Equations (4)–(6) are derived under the assumption of

vanishing or small spatiotemporal contribution sðx; tÞ, valid
for physical situations in which a rapid rupture emerges.
Yet, when rupture velocities are negligible compared
to elastic wave speeds, i.e., when a slow rupture emerges
[41–44], characteristic slip velocities v are expected to be
small such that the assumption behind Eqs. (4) and (5) may
no longer be valid. In fact, for a sufficiently slow rupture,
we expect the spatiotemporal integral term sðx; tÞ in Eq. (3)
to be significantly larger than ðμ=2csÞvðx; tÞ such that

2csΔτ

μvres
≫ 1 and Δτ ≃ −sðtÞ for slow rupture; ð7Þ

where sðtÞ is determined by

sðtÞ≃
μ0

2π

Z

∞

−∞

∂x0δðx
0; tÞ

x0−x
dx0 for sufficiently large x: ð8Þ

Here, δðx; tÞ is the slip displacement [_δðx; tÞ ¼ vðx; tÞ],
μ0 ¼ μ for antiplane shear, and μ0 ¼ μ=ð1 − νÞ for in-plane
shear (ν is Poisson’s ratio). Equation (8) is the quasistatic
limit of the fully inertial integral term sðx; tÞ [77], which is
expected to be valid for a slow rupture, where inertial
effects are negligible.
It is important to note that sðtÞ of Eq. (8), and,

consequently, also the stress drop Δτ, may feature a
nontrivial dependence on the rupture size and may attain
finite values for long times in practical applications. In fact,
a simple self-consistent dimensional analysis in the limit of
a large rupture in an infinite system indicates that s, and,
hence, also Δτ, inversely scales with the square root of the
rupture size. Furthermore, note that, while the stress drop
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Δτ predicted for a slow rupture in Eq. (7) is not related to
the radiation-damping term, it is still not a purely interfacial
property, but rather it involves the long-range elasticity of
the bodies surrounding the interface.

B. Estimates of the spatiotemporal integral

contribution to the stress drop

In the previous subsection, we discuss the contribution of
the long-range spatiotemporal term sðx; tÞ to the stress
drop, denoted there by s. In most of the discussion,
excluding the last part concerning a slow rupture, s is
assumed to be small compared to the radiation-damping
contribution. However, we do not provide quantitative
estimates for the relative magnitude of the two contribu-

tions, which is shown to be quantified by the ratio δvres=v
0
res

[cf. Eq. (6)]. In this subsection, we provide such estimates
in some strongly dynamic limiting cases. The basic idea is
that, since s emerges from long-range linear elastodynam-
ics, one can use some benchmark linear elastic fracture
mechanics (LEFM) crack solutions [78], in which a finite
stress drop Δτ is prescribed, to estimate its relative
magnitude.
While the whole purpose of the present paper is to show

that τres is not an a priori known interfacial quantity, and,
hence, also Δτ ¼ τd − τres is not a priori known, LEFM
solutions are still useful in estimating the relative magni-

tude of s through δvres=v
0
res. The point is that one can use

the prescribed Δτ to obtain v0res according to Eq. (5) for
s ¼ 0, then extract from the benchmark LEFM crack

solution vres for s ≠ 0, and finally obtain δvres=v
0
res ¼

ðvres − v0resÞ=v
0
res as an estimate for the relative magnitude

of s due to long-range linear elastodynamic interactions,
which are properly captured by the crack solution.
To apply this procedure, we consider Broberg’s self-

similar crack solutions in infinite media [78]. In these
solutions, two crack tips are assumed to symmetrically
expand at a constant velocity cr, starting from a zero crack
length at t ¼ 0. Self-similarity, which significantly sim-
plifies the problem, implies that all fields in the problem
depend only on the dimensionless combination x=crt.
While in general, as well as in the present work, frictional
rupture propagation is not a self-similar process and the
propagation speed is typically not constant, when the
propagation speed approaches the limiting or asymptotic
speed, self-similar conditions are reasonably approximated.
Self-similar solutions are also used in a related analysis in
Ref. [79] (cf. Appendix C3 therein), with the aim of
deriving precise conditions for rupture mode selection
(self-healing pulses versus cracklike), originally discussed
in Ref. [39].
Applying these ideas to antiplane shear (mode-III

symmetry) self-similar crack solutions [see Eq. (6.9.145)
in Ref. [78] ], we obtain in the limit cr → cs (cs is the

limiting speed for mode III) δvres=v
0
res ¼ 2=π − 1 ≈ −0.36

(see Appendix G). This result, which is, in fact,

quantitatively supported by numerical simulations in
Sec. III, suggests that, while the relative magnitude of s
is not extremely small under strongly dynamic mode-III
conditions, it is still reasonably well within the range of
validity of the linear perturbation theory of Eq. (6).
Repeating the same procedure for in-plane shear (mode-
II symmetry) self-similar crack solutions [see Eq. (6.9.85)
in Ref. [78] ] in the limit cr → cR (cR is the Rayleigh wave
speed, the limiting speed for mode II), we obtain that

δvres=v
0
res varies between −0.613 and −0.417 (the exact

value depends on Poisson’s ratio); see Appendix G for
details.
These latter estimates are quantitatively similar to the

mode-III estimate in the corresponding limiting case,
demonstrating that jsj is smaller than the radiation-damping
contribution for an in-plane frictional rupture under
strongly dynamic conditions. In both cases, the linear
perturbation theory of Eq. (6) seems to be reasonably
valid. We note that, while the estimates above are based on
bilateral (self-similar) rupture propagation, similar results
are expected to emerge for unilateral propagation. Finally,
we stress again that the influence of s on Δτ through

δvres=v
0
res in Eq. (6) is strongly reduced by the small

dimensionless factor ϵ (defined there). This discussion
concludes the presentation of our main theoretical predic-
tions, encapsulated in Eqs. (4)–(8). In the next sections, we
provide simulational and experimental support to these
predictions.

III. SIMULATIONAL SUPPORT

At this point, we first set out to test the predictions in
Eqs. (4)–(8) against extensive numerical simulations. To
that aim, we consider two semi-infinite bodies in frictional
contact. The advantage of considering infinite-height
bodies, i.e., the H → ∞ limit, is that the interfacial relation
in Eq. (3) becomes exact at all times, unlike for finite
bodies. We also employ periodic boundary conditions, with
periodicity W, in the sliding direction. We perform spectral
boundary integral method [67–69] calculations under anti-
plane shear (mode-III symmetry) deformation conditions,
which are similar to—yet somewhat simpler than—the in-
plane shear (mode-II symmetry) deformation conditions
considered up to now [8]. The main simplification is that
the displacement field in the mode-III problem uðx; y; tÞ ¼
uzðx; y; tÞẑ (the unit vectors satisfy ẑ⊥ x̂; ŷ) is essentially
scalar. The basic field uzðx; y; tÞ satisfies the bulk

elastodynamic equation μ∇2uz ¼ ρüz, together with
vðx; tÞ≡ _uzðx; y ¼ 0þ; tÞ − _uzðx; y ¼ 0−; tÞ and τðx; tÞ≡
σyzðx; y ¼ 0; tÞ ¼ μ∂yuzðx; y ¼ 0; tÞ. Equation (3) remains

valid, where σxyðx; y ¼ 0; tÞ is replaced by σyzðx; y ¼ 0; tÞ
and the integral term sðx; tÞ corresponds to mode III; see
Appendix A for more details.
The employed interfacial constitutive law features the

generic properties discussed above, with fðjvj;ϕÞ of
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Eq. (1) that reduces under steady-state conditions to either
the N-shaped or the no-minimum curves of Fig. 2(a)
[the exact expressions for fðjvj;ϕÞ can be found in
Appendix B] and with gð·Þ of Eq. (2) that is given by
g ¼ 1 − jvjϕ=D [5,45,46,49,52]. The bodies are loaded by
a constant driving stress τd, as depicted schematically in
Fig. 2(a), and the frictional rupture is nucleated by
introducing Gaussian perturbations of the proper amplitude
into a homogeneous state of very low slip velocity v0 [that
corresponds to the leftmost intersection point in Fig. 2(a)],
following the theoretical framework of Ref. [80] (the details
of the nucleation procedure are described in Appendices).
An example of the stress distribution of an emerging

frictional rupture is shown in Fig. 3(a). The figure reveals

two rapid rupture fronts propagating in opposite directions

(at 84% of the shear wave speed cs), where the stress ahead

of the two fronts is the applied stress τd. As the emerging

rupture is rapid, i.e., propagating at a speed comparable to

the elastic wave speed, the relevant prediction is given by

Eq. (5). As predicted, the observed stress left behind the

two rapid fronts, τres, is constant and smaller than the

driving stress τd, giving rise to a finite stress drop Δτ.

Following the discussion above, since in these calculations

H → ∞, the finite stress drop persists indefinitely [while in

finite size systems it persists for times ∼OðH=csÞ; cf. the
experiments of Ref. [35], discussed later]. The stress drop

Δτ observed in Fig. 3(a) quantitatively agrees with the

prediction in Eq. (5), as stated in the figure legend.
In Fig. 3(b), we present the slip-velocity distribution that

corresponds to the snapshot shown in Fig. 3(a). As

predicted, the slip velocity attains a plateau level vres
behind the propagating rupture fronts, and the residual

velocity vres is used to normalize the slip-velocity distri-

bution. The simulationally measured residual velocity vres
deviates by approximately 35% from the theoretical pre-

diction in Eq. (5), in quantitative agreement with the

estimate provided in Sec. II B for the spatiotemporal

integral contribution to the stress drop in this case (see

also Appendix G). Consequently, while the upper equation

in Eq. (6) implies that s is, in fact, not very small, the

prediction for Δτ works perfectly fine due to the ϵ ≪ 1

factor in the lower equation in Eq. (6).
In order to quantitatively test the latter prediction for a

rapid rupture over a range of physical conditions, we first
solve Eq. (4) to obtain v0resðτdÞ and then plug it into Eq. (5)
to obtain ΔτðτdÞ, where the latter is plotted in solid lines in
Fig. 3(c) [the two solid lines correspond to both the
N-shaped or the no-minimum steady-state friction laws
shown in Fig. 2(a)]. We then numerically calculate Δτ [as
demonstrated in Fig. 3(a)] for various driving stresses τd,
for both the N-shaped or the no-minimum steady-state
friction curves shown in Fig. 2(a). The numerical results
(discrete symbols) are superimposed on the theoretical
prediction in Fig. 3(c) [the lowest numerical data point
on the lower curve corresponds to Figs. 3(a) and 3(b)].

The agreement between the theoretical prediction and the
numerical results for Δτ is very good, where it is better for
the N-shaped steady-state friction law (lower curve) than
for the no-minimum steady-state friction law (upper curve).
This difference is fully accounted for by the magnitude and
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FIG. 3. (a) A snapshot of the frictional stress τðxÞ (normalized
by σ) during rupture propagation that emerges in dynamic
simulations with the N-shaped steady-state friction law of
Fig. 2(a) and τd ¼ 0.355σ (see the text for details). The snapshot
reveals two rapid rupture fronts propagating at an instantaneous
speed cr ≃ 0.84cs in opposite directions into regions character-
ized by the applied stress τd and leaving behind them a well-
defined residual stress τres < τd. Consequently, a well-defined
and finite stress drop Δτ emerges. Note that the y axis is truncated
at τ=σ ¼ 0.4 for visual clarity (the maximal value of τ=σ is 0.58)
and that x is normalized by the system length W [the x axis is
shared with (b)]. (b) The slip velocity vðxÞ that corresponds to the
snapshot shown in (a), normalized by the simulationally mea-
sured residual velocity vres (see the text for a discussion). The y
axis is also truncated for visual clarity, and x is normalized by the
system length W. (c) The theoretical predictions of Eqs. (4)
and (5) for ΔτðτdÞ of a rapid rupture (solid lines), both for the
N-shaped steady-state friction law of Fig. 2(a) (solid brown line,
lower curve) and for the no-minimum law of Fig. 2(a) (solid
orange line, upper curve). As expected [cf. Figs. 2(b) and 2(c)],
the former is smaller than the latter. The corresponding numerical
results, obtained from the spatial stress distribution of a frictional
rupture such as the one shown in (a), are shown by the discrete
symbols [circles for the N-shaped law, where the leftmost data

point corresponds to the results shown in (a), and squares for the
no-minimum law]. See the text for additional discussion.
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sign of ϵ, directly affected by the f∂fss=½∂ logðv
0
resÞ�g

term [cf. Eq. (6)].
The contribution of the spatiotemporal integral sðx; tÞ,

which is smaller than the radiation-damping contribution
for a rapid rupture, may be a dominant effect for a slow
rupture, as discussed around Eqs. (7) and (8). To test this
possibility, we generate a slow rupture by changing the
frictional parameters, the loading level, and the nucleation
procedure, as explained in Appendix E. An example of
such a slow rupture is shown in Fig. 4 (solid red line),
exhibiting a rupture front propagating at a velocity 2 orders
of magnitude smaller than cs and leaving behind it a stress
drop Δτ. We first verify that ð2csΔτ=μvresÞ ≫ 1, as
predicted by Eq. (7) (and as stated in the figure legend).
To test whether indeed Δτ ≃ −sðtÞ [cf. Eq. (7)], we use the
slip displacement gradient ∂xδðx; tÞ obtained from the
dynamical simulation to calculate the quasistatic integral
in Eq. (8) for any point x along the interface at t
corresponding to the snapshot in Fig. 4. The result for τd þ
sðx; tÞ is superimposed on τðx; tÞ in Fig. 4 (dashed green
line), demonstrating excellent agreement with the fully
dynamic result and, in particular, validating Δτ ≃ −sðtÞ for
this t. Consequently, our simulations strongly support the
theoretical predictions in Eqs. (4)–(8), for both a rapid and a
slow frictional rupture. Next, we discuss direct experimen-
tal support for these predictions.

IV. EXPERIMENTAL SUPPORT

In the previous section, we provide strong simulational
support to the theoretical predictions in Eqs. (4)–(8). Our
goal here is to test these predictions against experimental
data. Equation (4) predicts the slip velocity vres behind the
frictional rupture once the steady-state friction curve τssðvÞ

is known. The latter is not always known a priori over a
sufficiently wide range of steady-state slip velocities. In
fact, measuring both the frictional stress τres and the slip
velocity vres behind rupture fronts allows one to extract
τssðvÞ. In this case, any triplet ðτd; τres; vresÞ is predicted
to follow either Eq. (5) for a rapid rupture or Eq. (7) for
a slow rupture, independently of the steady-state friction
law τssðvÞ.
Measurements of both τres and vres behind rupture fronts

for various τd have been recently performed by two
independent experimental groups using two different
experimental systems and techniques [35,36]. The first
focuses on the frictional dynamics along the interface
between two blocks of Homalite probed through a novel
ultrahigh full-field imaging technique [35]. The second
focuses on the frictional dynamics along the interface
between two blocks of poly(methylmethacrylate) probed
through a combination of high-speed interfacial imaging
(via a method of total internal reflection) and simultaneous
measurements of the deformation fields slightly above the
interface [36]. Here, we use the data reported in these works
to quantitatively test our predictions.
We start with Ref. [35], where the observed rupture

fronts are all in the rapid (fully inertial) regime, and, hence,
the relevant prediction is given in Eq. (5). To test this
prediction, we extract the relevant experimental data from
Ref. [35] and plot in Fig. 5 the resulting Δτ versus vres
against the linear ΔτðvresÞ relation of Eq. (5), with a slope
that corresponds to μ=2cs of Homalite (see the figure
caption for additional details). The results reveal excellent
agreement between the experimental data and the theoreti-
cal prediction, without any free parameter. The theoretical

relation in Eq. (5) predicts v0res by assuming that the long-
range spatiotemporal contribution sðx; tÞ is negligibly
small, while in the experimental data we just use the
measured vres. The fact that there are no significant
horizontal deviations of the experimental data from the

theoretical line of Eq. (5), i.e., that vres is close to v0res,
indicates that sðx; tÞ is smaller in these experiments
compared to the estimate provided in Sec. II B. The origin
of the latter discrepancy is not yet clear.
The experimental data included in Fig. 5 are obtained in

the short time regime, before any wave reflection from the
system’s boundaries, for which Eqs. (4) and (5) are valid.
Yet, for a single case, measurements are reported after

the first wave reflection (but before the second one);
cf. Fig. 4(c) in Ref. [35]. Under these conditions, we
expect the ordinary radiation-damping term ðμ=2csÞv to be
replaced by a smaller term. Consequently, Eq. (4) predicts
that vres should increase, exactly as is experimentally
observed in Fig. 4(c) in Ref. [35] (denoted as a “reflected
rupture” in the figure), thus providing direct evidence for
the stepwise reduction of the radiation-damping term with
discrete wave reflections.
We now turn to the experiments of Ref. [36], which report

on extensivemeasurements of τres andvres; cf. Fig. 3(a) there.
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FIG. 4. A snapshot of the frictional stress τðxÞ (normalized by
σ, x is normalized by the system length W) of a slow rupture
(solid red line) propagating at about 1% of the shear wave speed
cs and leaving behind it a stress drop Δτ (see Appendix E for
details; note that the other rupture edge is not shown). The stress
drop satisfies ð2csΔτ=μvresÞ ≫ 1, as stated in the legend and in
agreement with Eq. (7). τd þ sðx; tÞ (dashed green line), where
sðx; tÞ is given by the quasistatic integral of Eq. (8), is super-
imposed. See the text for additional discussion.
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In order to test our predictions,weneed alsomeasurements of
the driving stress τd, which allow us to extract the stress drop
Δτ ¼ τd − τres. The corresponding extensive measurements
of τd are not presented inRef. [36], though τd is presented for
two highly relevant examples in Fig. 2(b) there (where τd is
denoted by τ0). One example corresponds to a very rapid
rupture (in fact, it is a supershear rupture, propagating at
nearly the dilatational wave speed) and the other to a slow
rupture (propagating at about 10% of the Rayleigh wave
speed). These data are exactly what is needed in order to test
our predictions, in particular, regarding the change in
behavior for a slow rupture. For a rapid rupture, we extract
from Fig. 2(b) of Ref. [36] (blue data) Δτ ¼ 1.17 MPa and
fromFig. 1(d) (bottom) vres ≃ 1.5 m=s (see additional details

in Appendix F). Using the reported values ρ ¼ 1170 kg=m3

and cs ¼ 1345 m=s [36], together with μ ¼ ρc2s , we obtain
ð2csΔτ=μvresÞ ¼ 0.99. This result is in great quantitative
agreement with the prediction for a rapid rupture in Eq. (5)
and is fully consistent with the independent experimental
data presented in Fig. 5. This result indicates that the

long-range spatiotemporal contribution sðx; tÞ is indeed
small also in the experiments of Ref. [36].
We then extract the corresponding data for the slow

rupture, obtaining from Fig. 2(b) of Ref. [36] (red data)
Δτ ¼ 0.242 MPa and from Fig. 1(d) (top) vres ≃ 0.02 m=s.
Using these data, we obtain ð2csΔτ=μvresÞ ≃ 15 ≫ 1, in
agreement with the theoretical prediction for a slow rupture
in Eq. (7). The results presented in the past two sections
provide strong simulational and experimental support for
our theoretical predictions and, hence, for the proposed
picture of the physical origin of stress drops in frictional
rupture. As stress drops are important for the possible
emergence of cracklike behavior in frictional rupture,
future studies of the latter should be based on the results
presented in this paper.

V. DISCUSSION AND CONCLUDING REMARKS

The possible deep relations between frictional rupture
and ordinary fracture provide a powerful conceptual and
quantitative framework to understand frictional dynamics
in a wide variety of physical contexts. This framework is
extensively used to interpret and quantify geophysical
observations [26,28], as well as a broad spectrum of
laboratory phenomena [29–35]. For example, a recent
series of careful laboratory experiments [32–34] demon-
strated that, when the analogy between frictional rupture
and ordinary fracture holds, the dynamic propagation of
laboratory earthquakes and their arrest can be quantitatively
understood to an unprecedented degree [25]. Yet, the
fundamental physical origin and range of validity of the
analogy between frictional rupture and ordinary fracture are
not yet fully understood. In this paper, we developed a
comprehensive and fundamental understanding of why,
how, and to what extent frictional rupture might be viewed
as an ordinary fracture process.
An important ingredient in the analogy is the emergence

of a finite and well-defined stress drop Δτ ¼ τd − τres, the
difference between the applied driving stress τd and the
residual stress τres, in frictional rupture. In the first part of
the paper, we showed that, contrary to widely adopted
assumptions, the residual stress τres is not a characteristic
property of frictional interfaces. Rather, for a rapid rupture,
τres is shown to crucially depend on elastodynamic bulk
effects—mainly wave radiation from the frictional interface
to the bodies surrounding it but also long-range elastody-
namic bulk interactions [encapsulated in the integral term
sðx; tÞ in Eq. (3)]—and the applied driving stress τd itself,
in addition to the contribution of the slip-rate dependence
of the constitutive friction law. Notably, we showed that for
a rapid rupture the deviation of τres from τd, i.e., the
existence of a finite stress drop Δτ, is a finite-time effect,
mainly limited by the wave travel time in finite systems. For
a slow rupture, it is shown that, if a stress drop exists, it is
intimately related to the long-range quasistatic elasticity of
the bodies surrounding the interface, again not exclusively
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FIG. 5. The theoretical prediction of Eq. (5) is plotted for
Homalite by the solid line, with the following high strain rate
material parameters μ ¼ 1.96 GPa and cs ¼ 1263 m=s [35,81],
which uniquely determine the slope of the stress drop Δτ versus
the slip rate vres behind a rupture front. Experiments on the
rupture of frictional interfaces composed of two blocks of
Homalite are performed in Ref. [35], where a novel ultrahigh
full-field imaging technique is employed to directly measure τres
and vres behind rupture fronts. Experiments for different values of
the applied shear stress τd are performed, which allow us to
extract from Fig. 8(a) of Ref. [35] five triplets ðτd; τres; vresÞ (see
details in Appendix F). For each triplet, we calculate Δτ≡ τd −

τres and then superimpose the resulting Δτ versus vres on the
theoretical prediction (discrete symbols). The symbols (and
colors) differentiate data obtained from high-resolution (full
brown circles) and low-resolution (empty green diamonds)
measurements, following the classification of Ref. [35]. The
symbol size and/or error bar represent the full range of mea-
surements reported on in Fig. 8(a) of Ref. [35] per imposed far-
field conditions.
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to interfacial physics. Our theoretical predictions are
supported by extensive computations and existing exper-
imental data from two independent laboratory experiments.
Our findings have important implications that go beyond

their basic nature; first, the results show that the widely

used slip-weakening models [9,10], in which the existence

of a residual stress τres < τd is a priori assumed (as a fixed

interfacial property), should be employed with care. In

particular, as τres has been shown to depend on the

externally applied stress τd, on the properties of the bodies

surrounding the interface, and on the rate dependence of the

frictional constitutive behavior, τres cannot be assumed to

be fixed. Rather, it should be self-consistently calculated

from the coupled interface-bulk problem. Somewhat

related conclusions in relation to slip-weakening models,

based on measurements of evolving local friction during

spontaneously developing laboratory earthquakes, have

been drawn in Ref. [35]. We also note that the dependence

of τres on the bulk constitutive relation and on long-range

bulk-mediated interactions may give rise to interesting

effects for more complicated bulk constitutive relations

(e.g., viscoelasticity) and in the presence of repeated rupture

events [82]. Such effects should be explored in future work.
The existence of a finite stress drop Δτ generically leads

to accelerating frictional rupture under stress-controlled far-

field loading conditions τd if Δτ is independent of the

rupture size L. In these situations, an inertia-limited rapid

rupture is expected to emerge on timescales for which wave

interactionwith the outer boundaries does not exist, andΔτ is

controlled by elastodynamic bulk effects. These conditions

are typically realized in many geological and laboratory

earthquakes [26,28–35]. On the other hand, slow rupture

propagation—a widely observed, yet highly debated and

elusive phenomenon [41–44]—is expected to feature smaller

stress drops Δτ that may decrease with increasing rupture

size L, such that rupture acceleration is limited.
The possible L dependence of Δτ and its possible

relations to the emergence of a slow rupture should be
further explored in the future. In addition, as the whole
discussion in this paper is valid for stress-controlled far-
field loading conditions (characterized by τd), future work
should also consider velocity-controlled far-field loading
conditions, where finite stress drops might emerge from
different physical considerations [83]. Finally, as the
existence of a finite stress drop Δτ does not in itself
guarantee the cracklike behavior of frictional rupture,
future work should clarify to what extent the analogy to
ordinary cracks can, in fact, quantitatively account for the
dynamics of frictional rupture. All in all, as stress drops are
key quantities in frictional failure dynamics, we expect our
results to provide a conceptual and quantitative framework
to address various fundamental and applied problems in
relation to the rupture dynamics of frictional interfaces,
with implications for both laboratory and geophysical-scale
phenomena.
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APPENDIX A: THE MAIN

NUMERICAL METHOD

The simulations discussed above rely on a spectral
boundary integral formulation of the elastodynamic equa-
tions [67–69]. The latter relates the traction stresses acting
along the interface between two linearly elastic half-spaces
and the resulting displacements. For the mode-III (antiplane
shear) elastodynamic problem studied in the manuscript,
the interface is initially uniformly prestressed by τd and is
set to slide at an extremely small steady velocity v0, such
that the shear tractions at the interface take the form

τðx; tÞ ¼ τd −
μ

2cs
½vðx; tÞ − v0� þ sðx; tÞ: ðA1Þ

The second right-hand-side term represents the instanta-
neous response to changes in the sliding velocity, the
so-called radiation-damping term. As discussed in the
manuscript, this term can be understood as the damping
of interfacial energy due to elastic waves radiated into the
infinite domain. The third term sðx; tÞ accounts for the
history and spatial distribution of interfacial displacements
uðx; tÞ. Both sðx; tÞ and uðx; tÞ are related in the spectral
domain via a convolution integral, whose expression can be
found in Ref. [69]. Because of the spectral nature of the
formulation, the simulated domain is taken to be periodic in
the lateral direction, with periodicityW. The latter is chosen
to be large enough to prevent any effect of the periodicity
on the results reported in the manuscript.
A rupture is nucleated at the center of the domain by

introducing a Gaussian perturbation of the slip velocity into
an initial steady sliding state at v0. The sliding velocity is
then computed by combining Eq. (A1) and the rate and
state-dependent friction law τ ¼ σsgnðvÞfðjvj;ϕÞ (see
Appendix B for more details). uðx; tÞ is then integrated
in time using an explicit time-stepping scheme
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uðx; tþ ΔtÞ ¼ uðx; tÞ þ 0.5vðx; tÞΔt: ðA2Þ

Note that the factor 0.5 on the right-hand side of Eq. (A2)
ensures that vðx; tÞ is indeed the slip velocity. In order to
guarantee the stability and the convergence of the numeri-
cal scheme, Δt is defined as the time needed for a shear
wave to travel a fraction 0.2 of one grid spacing, i.e.,
Δt ¼ 0.2Δx=cs. Additional information about the numeri-
cal scheme and the nucleation procedure can be found in
Ref. [80], together with videos of similar rupture events.

APPENDIX B: THE FRICTION LAWS

The friction laws used in this work, and whose steady-
state behaviors are plotted in Fig. 2, are related to the one
used previously in Refs. [58,80]. A friction law is defined
by the relation between the shear stress τ≡ σxy and the
compressive normal stress σ ≡ −σyy at the interface,

τ ¼ σsgnðvÞfðjvj;ϕÞ, and by the evolution equation for

state variable ϕ, _ϕ ¼ gðjvj;ϕÞ. The constitutive functions
fðjvj;ϕÞ and gðjvj;ϕÞ used in this work take the form

fðjvj;ϕÞ ¼

�

1þ b log

�

1þ
ϕ

ϕ�

��

×

�

f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðv�=vÞ
2

p þ a log

�

1þ
jvj

v�

��

; ðB1Þ

gðjvj;ϕÞ ¼ 1 −
jvjϕ

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðv�=vÞ
2

q

; ðB2Þ

where ϕ represents the typical age or maturity of contact
asperities that compose the interface at a microscopic scale
[45]. In Eq. (B1), f0 sets the scale of the dimensionless
frictional resistance (friction coefficient), b is the aging
coefficient, and a is related to the thermally activated
rheology of contact asperities [45]. The function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðv�=vÞ
2

p

that appears also in gðjvj;ϕÞ ensures that,

for vanishingly small steady-state velocities, ϕ saturates
after extremely long times to a finite value of D=v� rather
than diverges. As discussed in Ref. [80], this regularization
makes no significant difference in the results discussed
above. For the sake of notational simplicity, the regulari-
zation is hence omitted in the main text (though it is
included in the calculations). Equations (B1) and (B2) lead
to the steady-state friction curve in Fig. 2 with a minimum
at an intermediate v (brown solid line), while the no-
minimum steady-state friction curve (dash-dotted orange
line) is obtained after neglecting the “þ1” in the b term.
The reader is referred to Refs. [58,80] for additional

discussions about the formulations of Eqs. (B1) and (B2),
which go beyond the conventional rate-and-state friction
laws. Nevertheless, the results and conclusions discussed
above are independent of the choice of the rate-and-state
formulation.

APPENDIX C: 1D RUPTURE FRONTS

In this Appendix, we describe propagating steady-state
rupture fronts in thin (quasi-1D) systems, where no stress
drop emerges. We consider two long and thin linear elastic
bodies of height H in frictional contact, such that the
momentum balance equation ρü ¼ ∇ · σ reduces to
[75,80,84]

Hμ̄ðc−2
1D∂tt − ∂xxÞuðx; tÞ ¼ τd − τ½vðx; tÞ;ϕðx; tÞ�; ðC1Þ

where u≡ ux, μ̄ and c1D are the effective shear modulus
and wave speed [75,84], respectively, and τd is a constant
driving stress (see Fig. 2).
Propagating 1D steady-state solutions then satisfy [80]

μ̄Hc−1
1Dð1 − β2Þβ−1v0ðξÞ ¼ τd − τ½vðξÞ;ϕðξÞ�; ðC2Þ

βc1Dϕ
0ðξÞ ¼ ϕðξÞvðξÞ=D − 1; ðC3Þ

where we define a comoving coordinate ξ≡ x − βc1Dt,
integrate out u, and eliminate partial time derivatives.
Steady-state rupture propagation is a dynamical process

in which a homogeneous V state invades a homogeneous
v0 ≪ V state [32,35,75,80], both shown in Fig. 2 as the
intersections of the velocity-strengthening branches of the
friction lawwith the driving stress τd.We find these solutions
for the friction law described in Sec. V, using a shooting
method [85] (similar to that used in Refs. [75,84]). The
solution is shown in Fig. 6. To normalize the stress fields, we
use the definition τm as the maximal value τ attains in the

profile, and l≡ ½ð1 − β2=Þβ�fHVμ̄=½c1Dðτm − τdÞ�g is the
length scale over which the fields change, which can be
calculated by a scaling analysis of Eq. (C2).
As seen in Fig. 6, the stress both ahead and behind the

rupture front equals τd; i.e., there exists no stress drop.
A corollary is that no singularity is observed in Fig. 6
[compare to Figs. 3(a) and 4].

-1.5 -1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

FIG. 6. The normalized spatial profiles of τðξÞ and vðξÞ near a
steady-state rupture front edge propagating from left to right with

a velocity c1Dr ¼ βcs, with β ¼ 0.144 (see the text for details on
the employed normalization). Note also that τd=σ ¼ 0.355,
exactly as in Fig. 2, though in the latter 2D case a rupture front
with β ¼ 0.84 emerges [cf. Fig. 3(a)].
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APPENDIX D: PARAMETERS

The parameters used for all the calculations described in
this work, except for the slow rupture discussed in
Appendix E, are given in Table I. Note that the values
of the listed parameters are characteristic of some labo-
ratory experiments (see Ref. [59] for details). However, the
generic properties of the derived results are independent of
the exact numbers and are relevant to a broad range of
materials and physical situations. For example, v� that
controls the velocity scale below which the system is in the
stick phase can be taken to be significantly smaller.

APPENDIX E: 2D SLOW RUPTURE FRONTS

The very same constitutive framework can give rise to
slow rupture fronts (cr ≪ cs), as demonstrated in Fig. 4.
While the emergence of a slow rupture is of great interest,
in general, in the present context we are interested in just
generating a slow rupture and studying its properties in
relation to the theoretical prediction in Eqs. (7) and (8). One
way to generate a slow rupture within our constitutive
framework is to use friction parameters that shift the steady-
state friction curve to smaller slip velocities and to employ a
different nucleation procedure.
In particular, using the different set of parameters listed

in Table II, we obtain the dash-dotted orange steady-state
curve in Fig. 7(a) [the solid brown line is identical to the

one shown in Fig. 2(a)]. For these parameters and for the
same value of the normalized driving stress τd=σ, the
effective steady-state friction curve shown in Fig. 7(b)
(dashed orange line, obtained by adding the radiation-
damping term ðμ=2csÞv) is practically indistinguishable
from the steady-state friction curve in the relevant slip
velocities range. In addition, the rupture is nucleated by
introducing a perturbation to the internal state field ϕ of the
form

ϕðx; t ¼ 0Þ ¼
D

vvw
þ ε sinðkxÞ; ðE1Þ

with k ¼ 2π=W and ε ¼ 10−4, into an interface that slides
homogeneously at a velocity vvw that corresponds to a fixed
point on the velocity-weakening branch [it is marked by the
black diamond in Fig. 7(b)]. This nucleation procedure is
different from the one used elsewhere in the paper, where
Gaussian perturbations are introduced into an essentially
locked-in interface, as described in detail in Ref. [80].
These modifications are sufficient to generate the slow

rupture shown in Fig. 4. The physics behind the emergence
of a slow rupture, which is very interesting in itself, is not
thoroughly discussed here. It deserves an investigation of
its own, which we hope to pursue in the future.

TABLE I. Values for all parameters used in MKS (Meter-

Kilogram-Second system).

Parameter Value Units

μ, μ̄ 9 × 109 Pa

σ 106 Pa

cs, c1D 2739 m/s

D 5 × 10−7 m

b 0.075 � � �
v� 10−7 m/s

f0 0.28 � � �
ϕ� 3.3 × 10−4 s

a 0.005 � � �
H 0.2 mm

FIG. 7. (a) The normalized steady-state friction law as used in
Fig. 2(a) (solid brown line) and the modified one that corresponds
to the parameters listed in Table II (dash-dotted orange line). The
horizontal green line represents the normalized driving stress
τd=σ. (b) An enlargement of the dash-dotted orange line in (a),
where the effective steady-state friction curve (dashed orange
line, obtained by adding the radiation-damping term ðμ=2csÞv) is
added. The intersection of the driving stress with the velocity-
weakening branch of the friction law is denoted by vvw (black
diamond). Perturbations around vvw lead to the slow rupture
shown in Fig. 4; see the text for additional details.

TABLE II. The values of the rate-and-state parameters (in MKS
units), which are discussed in Fig. 7 and which gave rise to the
slow rupture shown in Fig. 4.

Parameter Value Units

D 5 × 10−7 m

b 0.1 � � �
v� 10−8 m/s

f0 0.28 � � �
ϕ� 0.05 s
a 0.0075 � � �
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APPENDIX F: THE EXPERIMENTAL DATA

The data reported in Fig. 5 are obtained from the
experimental measurements [35] of ruptures propagating
along a frictional interface formed by two plates of
Homalite. Figure 8 of Ref. [35] reports the steady-state
friction coefficient versus slip rate measured at the interface
in the wake of the propagating rupture front. In terms of the
notation used in this manuscript, the former is the ratio
τres=σ, while the latter corresponds to vres. In the experi-
ments of Ref. [35], the frictional interface is precut at an
angle α from the principal direction of the imposed
compressive stress P, such that

τd ¼ P cos α sin α; ðF1Þ

σ ¼ P cos2 α: ðF2Þ

Rubino, Rosakis, and Lapusta [35] distinguish data
measured with respectively high and low levels of accuracy.
From the datasets reported in Fig. 8 of Ref. [35] and their
associated boundary conditions listed in Table III, we
compute the triplets ðτd; τres; vresÞ, which are then used
to construct Fig. 5.
In Sec. IV, we also analyze experimental data extracted

from Ref. [36] in order to test the theoretical predictions in
Eqs. (6) and (7). The bulk parameters ρ ¼ 1170 kg=m3 and
cs ¼ 1345 m=s, reported on in Ref. [36], are used together

with μ ¼ ρc2s . The stress dropsΔτ can be read off Fig. 2(b) of
Ref. [36] (all figure indices in this and the next paragraphs
refer to Ref. [36]), where the shear stress distribution near the
edge of both a slow (red) and a rapid (here supershear, blue)
rupture is presented. For a rapid rupture, we extract from
Fig. 2(b) (blue data) Δτ ¼ 1.17 MPa. The corresponding
particle velocity distribution _uxðx; y ¼ 3.5 mmÞ, measured
3.5 mm above the interface, is presented in Fig. 1(d)
(bottom). We use the leftmost value behind the edge,
_uxðx; y ¼ 3.5 mmÞ ≃ 0.75 m=s, as an estimate for the

tail particle velocity at the interface _uxðy ¼ 0þÞ, from
which we estimate the residual slip velocity to be vres ¼
2_uxðy ¼ 0þÞ ≃ 1.5 m=s. Note that the latter estimate is in
very good agreement with the slip velocity reported for a
rapid (supershear) rupture in Fig. 3 (blue circles). Moreover,
it is also invery goodagreementwith thenormalized real area
of contact Ar=A0 ≃ 0.6, reported on in Fig. 1(c), which

according to Fig. 3(b) indeed corresponds to vres slightly
larger than 1 m=s.
Using these estimates, we obtain

2csΔτ

μvres
¼

2Δτ

ρcsvres
¼

2 × 1.17 × 106

1170 × 1345 × 1.5
¼ 0.99; ðF3Þ

in great agreement with the theoretical prediction
Eq. (5) in the manuscript. Repeating this procedure for
a slow rupture, we extract from Fig. 2(b) (red data)
Δτ ¼ 0.242 MPa and from Fig. 1(d) (top) vres ¼
2_uxðy ¼ 0þÞ ≃ 2 × 0.01 ¼ 0.02 m=s. Using these esti-
mates, we obtain

2csΔτ

μvres
¼

2Δτ

ρcsvres
¼

2 × 0.242 × 106

1170 × 1345 × 0.02
≃ 15 ≫ 1; ðF4Þ

in great agreement with the theoretical prediction Eq. (7).

APPENDIX G: USING BENCHMARK CRACK

SOLUTIONS TO ESTIMATE THE INTEGRAL

CONTRIBUTION TO THE STRESS DROP

We provide here details about the estimates of the
spatiotemporal integral contribution to the stress drop
presented in Sec. II B. As explained in Sec. II A, the
relative magnitude of the latter, denoted by s, is given

by δvres=v
0
res ¼ ðvres − v0resÞ=v

0
res. Once Δτ is known, v

0
res is

obtained through Eq. (5). Our goal is to show how vres can
be estimated using benchmark crack solutions [78].
Consider first antiplane shear (mode-III symmetry) self-
similar crack solutions, where the crack face displacement
is given in Eq. (6.9.145) in Ref. [78] and takes the form

uzðx; y ¼ 0þ; tÞ ¼
τd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcrtÞ
2 − x2

p

μEð1 − c2r=c
2
sÞ

for jxj < crt; ðG1Þ

where the notation is adapted to be consistent with the
present manuscript and Eð·Þ is the complete elliptic integral
of the second kind [86]. Note that the center of the crack,
whose length at time t is 2crt, is located at x ¼ 0.
In order to estimate vres based on Eq. (G1), follow these

steps: (i) Replace the far-field applied shear stress τd by the
stress drop Δτ to account for a finite frictional resistance,
not included in the crack solution, (ii) take the limit cr → cs
(cs is the limiting propagation speed in mode III), because
only in this limit does the frictional rupture we consider
mimic self-similar propagation, (iii) focus on a region far
behind the propagating tip, i.e., set x → 0, which is relevant
for the definition of a stress drop, (iv) take the time
derivative to obtain _uzðx ¼ 0; y ¼ 0þ; tÞ, and, finally,

(v) set vres ¼ _uzðx ¼ 0; y ¼ 0þ; tÞ− _uzðx ¼ 0; y ¼ 0−; tÞ ¼
2_uzðx ¼ 0; y ¼ 0þ; tÞ. The result reads

TABLE III. Datasets from Fig. 8 of Rubino, Rosakis, and
Lapusta [35], which are used in Fig. 5.

Symbols Resolution P [MPa] α

Blue dots High 23 29°
Red dots High 7.4 29°
Black dots High 12 24°
Green diamonds Low 13.6 29°
Purple diamonds Low 23 29°
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vres ¼
2csΔτ

μEð0Þ
: ðG2Þ

Using Eq. (5), which implies v0res ¼ 2csΔτ=μ, together with
Eq. (G2), we obtain (as reported on in Sec. II B)

δvres=v
0
res ¼ 1=Eð0Þ − 1 ¼ 2=π − 1 ≈ −0.36; ðG3Þ

where Eð0Þ ¼ π=2 is used.
In order to repeat this procedure for in-plane shear

(mode-II symmetry) self-similar crack solutions, we start
with the crack face displacement given in Eq. (6.9.85) in
Ref. [78]:

uxðx; y ¼ 0þ; tÞ ¼
τdðc

2
s − c2rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcrtÞ
2 − x2

p

μc2dg2ðcr=cs; cs=cdÞ
ðG4Þ

for jxj < crt, where the function g2ð·Þ is given in
Eq. (6.9.87) in Ref. [78] and cd is the dilatational wave
speed. Considering the limit cr → cR (cR is the Rayleigh
wave speed, the limiting speed for mode II) and following
the procedure described above, we obtain

vres ¼
2cRΔτ

μ

ðc2s − c2RÞ

c2dg2ðcR=cs; cs=cdÞ
; ðG5Þ

which leads to

δvres

v0res
¼

ðc2s − c2RÞcR=cs
c2dg2ðcR=cs; cs=cdÞ

− 1: ðG6Þ

The latter is a function of cs=cd (note that cR=cs is also
determined by cs=cd). Evaluating g2ðcR=cs; cs=cdÞ [88] for
the whole range of admissible cs=cd values (which, in turn,
depends on Poisson’s ratio) and plugging in Eq. (G6) shows

that δvres=v
0
res varies between −0.613 and −0.417, as

reported on in Sec. II B.
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