000873516 001__ 873516
000873516 005__ 20210130004443.0
000873516 0247_ $$2doi$$a10.3389/fpls.2019.01482
000873516 0247_ $$2Handle$$a2128/24187
000873516 0247_ $$2altmetric$$aaltmetric:72920926
000873516 0247_ $$2pmid$$apmid:31998328
000873516 0247_ $$2WOS$$aWOS:000508950900001
000873516 037__ $$aFZJ-2020-00785
000873516 041__ $$aEnglish
000873516 082__ $$a570
000873516 1001_ $$0P:(DE-Juel1)165737$$aKeller, Beat$$b0$$eCorresponding author
000873516 245__ $$aGenotype Specific Photosynthesis x Environment Interactions Captured by Automated Fluorescence Canopy Scans Over Two Fluctuating Growing Seasons
000873516 260__ $$aLausanne$$bFrontiers Media$$c2019
000873516 3367_ $$2DRIVER$$aarticle
000873516 3367_ $$2DataCite$$aOutput Types/Journal article
000873516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580818895_4614
000873516 3367_ $$2BibTeX$$aARTICLE
000873516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873516 3367_ $$00$$2EndNote$$aJournal Article
000873516 520__ $$aPhotosynthesis reacts dynamic and in different time scales to changing conditions. Light and temperature acclimation balance photosynthetic processes in a complex interplay with the fluctuating environment. However, due to limitations in the measurements techniques, these acclimations are often described under steady-state conditions leading to inaccurate photosynthesis estimates in the field. Here we analyze the photosynthetic interaction with the fluctuating environment and canopy architecture over two seasons using a fully automated phenotyping system. We acquired over 700,000 chlorophyll fluorescence transients and spectral measurements under semi-field conditions in four crop species including 28 genotypes. As expected, the quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) was determined by light intensity. It was further significantly affected by spectral indices representing canopy structure effects. In contrast, a newly established parameter, monitoring the efficiency of electron transport (Fr2/Fv in the dark respective Fr2'/Fq' in the light), was highly responsive to temperature (R2 up to 0.75). This parameter decreased with temperature and enabled the detection of cold tolerant species and genotypes. We demonstrated the ability to capture and model the dynamic photosynthesis response to the environment over entire growth seasons. The improved linkage of photosynthetic performance to canopy structure, temperature and cold tolerance offers great potential for plant breeding and crop growth modeling
000873516 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000873516 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000873516 588__ $$aDataset connected to CrossRef
000873516 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, Shizue$$b1$$ufzj
000873516 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b2$$ufzj
000873516 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, Roland$$b3$$ufzj
000873516 7001_ $$0P:(DE-Juel1)161457$$aSteier, Angelina$$b4$$ufzj
000873516 7001_ $$0P:(DE-HGF)0$$aKraska, Thorsten$$b5
000873516 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b6$$ufzj
000873516 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2019.01482$$gVol. 10, p. 1482$$p1482$$tFrontiers in plant science$$v10$$x1664-462X$$y2019
000873516 8564_ $$uhttps://juser.fz-juelich.de/record/873516/files/fpls-10-01482.pdf$$yOpenAccess
000873516 8564_ $$uhttps://juser.fz-juelich.de/record/873516/files/fpls-10-01482.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873516 909CO $$ooai:juser.fz-juelich.de:873516$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129358$$aForschungszentrum Jülich$$b1$$kFZJ
000873516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b2$$kFZJ
000873516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich$$b3$$kFZJ
000873516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161457$$aForschungszentrum Jülich$$b4$$kFZJ
000873516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b6$$kFZJ
000873516 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000873516 9141_ $$y2019
000873516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873516 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873516 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PLANT SCI : 2017
000873516 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873516 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873516 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873516 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873516 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873516 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000873516 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000873516 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873516 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873516 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873516 920__ $$lyes
000873516 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000873516 980__ $$ajournal
000873516 980__ $$aVDB
000873516 980__ $$aUNRESTRICTED
000873516 980__ $$aI:(DE-Juel1)IBG-2-20101118
000873516 9801_ $$aFullTexts