000873541 001__ 873541 000873541 005__ 20210130004447.0 000873541 0247_ $$2doi$$a10.1039/C9SM01764J 000873541 0247_ $$2ISSN$$a1744-683X 000873541 0247_ $$2ISSN$$a1744-6848 000873541 0247_ $$2altmetric$$aaltmetric:67956068 000873541 0247_ $$2pmid$$apmid:31651922 000873541 0247_ $$2WOS$$aWOS:000502302700004 000873541 037__ $$aFZJ-2020-00809 000873541 082__ $$a530 000873541 1001_ $$0P:(DE-Juel1)178036$$aTiwari, Avinash$$b0$$ufzj 000873541 245__ $$aRolling friction of elastomers: role of strain softening 000873541 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2019 000873541 3367_ $$2DRIVER$$aarticle 000873541 3367_ $$2DataCite$$aOutput Types/Journal article 000873541 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580733029_825 000873541 3367_ $$2BibTeX$$aARTICLE 000873541 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000873541 3367_ $$00$$2EndNote$$aJournal Article 000873541 520__ $$aWe study the temperature and velocity dependency of rolling friction. Steel and PMMA cylinders are rolled on sheets of nitrile butadiene rubber (NBR), with and without filler, and fluoroelastomer (FKM) with filler. Measurements of the rolling friction are performed for temperatures between −40 °C and 20 °C, and for velocities between 5 μm s−1 and 0.5 cm s−1. For the unfilled NBR, a smooth rolling friction master curve is obtained using the bulk viscoelastic frequency–temperature shift factor aT. For the filled rubber compounds, a small deviation from the bulk viscoelastic shift factor is observed at low temperatures. The experimental data are analyzed using an analytical theory of rolling friction. For the filled compounds, good agreement with theory is obtained when strain softening is included, which increases the rolling friction by a factor ∼2 for the filled FKM and ∼3 for the filled NBR compounds. For the unfilled NBR, the maximum of the rolling friction occurs at higher sliding speeds than predicted by the theory. We discuss the role of the adhesive (crack-opening) contribution to the rolling friction, and the role of frozen-in elastic deformations as the rubber is cooled down below the rubber glass transition temperature. 000873541 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0 000873541 588__ $$aDataset connected to CrossRef 000873541 7001_ $$0P:(DE-HGF)0$$aMiyashita, N.$$b1 000873541 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b2$$eCorresponding author$$ufzj 000873541 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C9SM01764J$$gVol. 15, no. 45, p. 9233 - 9243$$n45$$p9233 - 9243$$tSoft matter$$v15$$x1744-6848$$y2019 000873541 8564_ $$uhttps://juser.fz-juelich.de/record/873541/files/c9sm01764j.pdf$$yRestricted 000873541 8564_ $$uhttps://juser.fz-juelich.de/record/873541/files/c9sm01764j.pdf?subformat=pdfa$$xpdfa$$yRestricted 000873541 909CO $$ooai:juser.fz-juelich.de:873541$$pVDB 000873541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178036$$aForschungszentrum Jülich$$b0$$kFZJ 000873541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b2$$kFZJ 000873541 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000873541 9141_ $$y2019 000873541 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000873541 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000873541 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000873541 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017 000873541 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000873541 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000873541 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000873541 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000873541 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000873541 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000873541 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000873541 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000873541 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000873541 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000873541 980__ $$ajournal 000873541 980__ $$aVDB 000873541 980__ $$aI:(DE-Juel1)IAS-1-20090406 000873541 980__ $$aI:(DE-Juel1)PGI-1-20110106 000873541 980__ $$aUNRESTRICTED