000873555 001__ 873555
000873555 005__ 20240712112829.0
000873555 0247_ $$2doi$$a10.1021/acsaem.9b01672
000873555 0247_ $$2WOS$$aWOS:000510104700050
000873555 037__ $$aFZJ-2020-00823
000873555 082__ $$a540
000873555 1001_ $$0P:(DE-Juel1)176607$$aKin, Li-chung$$b0
000873555 245__ $$aEfficient Area Matched Converter Aided Solar Charging of Lithium Ion Batteries Using High Voltage Perovskite Solar Cells
000873555 260__ $$aWashington, DC$$bACS Publications$$c2020
000873555 3367_ $$2DRIVER$$aarticle
000873555 3367_ $$2DataCite$$aOutput Types/Journal article
000873555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602839675_16671
000873555 3367_ $$2BibTeX$$aARTICLE
000873555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873555 3367_ $$00$$2EndNote$$aJournal Article
000873555 520__ $$aEfficient solar charging of a battery has been demonstrated in the past by sizing batteries many times that of a solar cell to reduce the effective current density experienced by the battery. Although efficient, such a strategy of coupling a battery up to 10 times larger with a solar cell will make solar–battery integration more challenging and limit the size, and thus maximum power output, of an integrated device. Area matched LFP-LTO (lithium iron phosphate, lithium titanate) battery solar charging using high voltage lead halide perovskite solar cells with a boost converter gave a maximum overall efficiency of 9.9% and a high 14.9% solar to battery charging efficiency. Two differently sized systems were compared using the same converter, and an exergy analysis was performed, showing limitations of converter usage in solar-powered internet of things (IoT) devices and size dependent battery losses.
000873555 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000873555 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x1
000873555 588__ $$aDataset connected to CrossRef
000873555 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b1
000873555 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b2
000873555 7001_ $$0P:(DE-Juel1)166079$$aAgbo, Solomon N.$$b3
000873555 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
000873555 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b5
000873555 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6
000873555 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7
000873555 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b8
000873555 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b9
000873555 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b10$$eCorresponding author
000873555 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.9b01672$$gVol. 3, no. 1, p. 431 - 439$$n1$$p431 - 439$$tACS applied energy materials$$v3$$x2574-0962$$y2020
000873555 8564_ $$uhttps://juser.fz-juelich.de/record/873555/files/acsaem.9b01672-1.pdf$$yRestricted
000873555 8564_ $$uhttps://juser.fz-juelich.de/record/873555/files/acsaem.9b01672-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873555 909CO $$ooai:juser.fz-juelich.de:873555$$pVDB
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176607$$aForschungszentrum Jülich$$b0$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b1$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b2$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166079$$aForschungszentrum Jülich$$b3$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b5$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b6$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b8$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b9$$kFZJ
000873555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b10$$kFZJ
000873555 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000873555 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x1
000873555 9141_ $$y2020
000873555 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000873555 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000873555 980__ $$ajournal
000873555 980__ $$aVDB
000873555 980__ $$aI:(DE-Juel1)IEK-5-20101013
000873555 980__ $$aI:(DE-Juel1)IEK-9-20110218
000873555 980__ $$aUNRESTRICTED
000873555 981__ $$aI:(DE-Juel1)IMD-3-20101013
000873555 981__ $$aI:(DE-Juel1)IET-1-20110218
000873555 981__ $$aI:(DE-Juel1)IET-1-20110218