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ABSTRACT

A stabilized version of the fundamental solution method to catch ill-conditioning
effects is investigated with focus on the computation of complex-valued elastic in-
terior transmission eigenvalues in two dimensions for homogeneous and isotropic
media. Its algorithm can be implemented very shortly and adopts to many similar
PDE-based eigenproblems as long as the underlying fundamental solution function
can be easily generated. We develop a corroborative approximation analysis which
also implicates new basic results for transmission eigenfunctions and present some
numerical examples which together prove successful feasibility of our eigenvalue re-
covery approach.
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1. Introduction

Interior transmission eigenvalues (ITEs) arise primarily in the study of inverse scat-
tering theory, cf. [1–3]. Their major role comes along with conventional reconstruction
algorithms for which incident wave frequencies of that specific order need to be ex-
cluded to fully justify the feasibility of qualitative methods for the target recovery
process. While the acoustic and electromagnetic cases have been thoroughly investi-
gated in the last years, see [4–13], there are comparably only a few papers covering the
numerical study of elastic ITEs, e.g. [14–17], especially when focusing on the overall
complex-valued spectrum. It is the purpose of this paper to introduce the approved
algorithm from [10] and [9] also for their computation. As for the latter, we confine
to ideally isotropic, homogeneous and planar-symmetric scatterers to resemble the 2D
case, but allow for less regular shapes within our theoretical foundation now which are
assumed to be known in advance.

Numerical challenges in computing ITEs origin from the fact that the underlying
interior transmission eigenvalue problem (ITP) is non-self-adjoint, non-elliptic and
non-linear in the eigenvalue parameter. Its straightforward discretization would there-
fore result in non-Hermitian matrices whose pseudospectra are generally harder to
capture, especially when the matrix size becomes large. In this context, the advantage
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of Ritz-type methods such as the method of fundamental solution (MFS) whose pro-
totype goes back to Kupradze in the 1960s for approximating solutions of well-posed
boundary value problems, see [18], is that surprisingly accurate results can already be
obtained for many regular domains while only a relatively small number of trial func-
tions is used. Due to this observation our MFS-based eigenvalue algorithm similar to
[19] will be efficient at remarkably low numerical costs and is still easy-to-implement
as being mesh- and integration-free unlike the usual competitive methods, cf. [14].

In the course of substantiating our approach mathematically, we prove some novel
findings concerning norm relations of ITP eigenfunction pairs which surprisingly differ
for purely real and complex-valued ITEs with non-vanishing imaginary part. Since the
field of eigenfunction properties is quite undiscovered unlike their eigenvalues them-
selves in the ITP context, see [20], we want to point out that most of our results
presented here should be adaptable for the acoustic and electromagnetic case, too.

The remainder of this paper is structured as follows: In section 2 we will setup the
modeling framework of the ITP. Section 3 will then consider the eigenvalue approx-
imation problem from an abstract and thus more general perspective that also fits
other boundary control techniques such as the boundary element method. Definitions
and prerequisite results that are specific for our MFS ansatz will be given in section 4
and are followed by numerical examples in section 5. A final conclusion will summarize
the merits of our proposed method at the end.

2. Setup of the elastic interior transmission eigenvalue problem

We model time harmonic vibrations of a bounded and elastically penetrable solid D
with homogeneous mass density ρ = const > 0 which is assumed to differ from its
normalized background material through ρ 6= 1. Mathematically, we think of D as a
domain D ⊂ R2 of class C1,1 whose regional displacement, when absent or present
in comparison with its surrounding, will be modeled by vector fields u, v : D → C2,
respectively. For both the generalized but isotropic version of Hooke’s law shall relate
their gradients in a linear way to the internal stress σ : C2×2 → C2×2 via

σ(z) = 2µǫ(z) + λtr(ǫ(z))I .

Here, I ∈ R2×2 is the identity matrix and ǫ(z) = (∇z + (∇z)T)/2 is the symmetric
part of the gradient for any displacement field z measuring its corresponding strain.
Further, µ, λ are Lamé parameters which coincide for simplicity for both the scatterer
and the background and which are constrained to µ > 0 as well as 2µ + λ > 0 to
guarantee strong ellipticity of the governing Navier system, see [21]

div(σ(z)) + ̺ω2z =
(
µ∆z + (λ+ µ)∇(div z)

)
+ ̺ω2z =: ∆∗z + ̺ω2z = 0 . (1)

These equations describe from a physical perspective the spatial part of the elastic
wave propagation, where ̺ represents any mass density under consideration. With
this notation at hand we may now formulate the elastic interior transmission problem
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(ITP):

∆∗u+ ω2u = 0 in D ,

∆∗v + ρω2v = 0 in D ,

u = v on ∂D ,

σ(u)ν = σ(v)ν on ∂D ,

(2)

where u, v ∈ L2(D,C2) and the scattered part (u− v) is supposed to be an element of
the more regular Sobolev space

H2
0 (D) = {φ ∈ H2(D,C2) : φ = 0 and σ(φ)ν = 0 on ∂D}

with outer normal ν along the boundary ∂D. Frequencies ω ∈ C\{0} which admit non-
trivial solutions (u, v) to the above ITP will be called interior transmission eigenvalues
(ITEs). Apparently, they refer to those pairs of harmonic waves in D whose behavior
along the scattering boundary coincides and which thus lock the possibility of detecting
the scatterer on the basis of close-by data.

Note that the co-normal derivative appearing in the Neumann boundary condition
of (2) is connected naturally to the highest order term of their PDEs via integration
by parts, also known as Betti’s first formula, see [22]

∫

D
∆∗φ · ψ dx = −

∫

D
σ(φ) : ∇ψ dx+

∫

∂D
(σ(φ)ν) · ψ ds

= −
∫

D
2µǫ(φ) : ǫ(ψ) + λdiv φ divψ dx+

∫

∂D
(σ(φ)ν) · ψ ds

(3)

which holds by duality for any ψ ∈ L2(D,C2) and φ ∈ H2(D,C2). Here, the colon
symbol denotes the Frobenius inner product given by A : B = tr(ABH), whereas the
single dot refers to the scalar-product-like operation a · b = aHb for a, b ∈ C2. Having
thus set the mathematical framework of our eigenproblem, in the sequel we try to
recover ITEs ω by solving (2) approximately in the sense that we allow for small
deviations within the boundary data that are assumed to vanish in some limiting
procedure.

3. Approximation analysis of elastic interior transmission eigenvalues via

boundary control

We define our relaxed space of trial functions for approximating solutions of (2) subject
to boundary optimization by

H :=
⋃

0≤arg(ω)<π

4

H(ω) , (4)

where for any ω ∈ C\{0}

H(ω) :=
{
(u, v) ∈ C∞(D)× C∞(D) : ∆∗u+ ω2u = 0 , ∆∗v + ω2ρv = 0

}
.
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By definition, any pair in H(ω) fulfills the required PDE conditions from (2) auto-
matically and it is the choice of ω that determines in how far their boundary data are
compatible in the sense of the ITP. Note that the above restrictions on ω in H are due
to the following theorem on the overall locations of complex ITEs and the fact that
both ω, −ω and −ω are each ITEs if and only if some ω from the first quadrant in the
complex plane is. We drop the proof of the former since it would exactly follow the
lines from its acoustic analogon in [23] with the obvious operator adaptions.

Theorem 1. Let ω = ω1 + iω2 ∈ C\{0} be an ITE with ω1, ω2 ∈ R for the scatterer
D. Then it holds that

ω2
1 > ω2

2 and ω4
1 + ω4

2 +
2ρ+ 6

δ − 1
ω1ω2 −

λ(D)

ρ
(ω2

1 − ω2
2) > 0 ,

where λ(D) is the smallest interior Dirichlet eigenvalue for the Navier problem (1)
with ̺ = ρ. In particular, if ω lies in the first quadrant of the complex plane, then
0 ≤ arg(ω) < π/4.

We aim to extract those ω which allow for approximate ITP eigenfunctions inH with
a relatively small ratio of boundary misfit to interior norm. The next theorem states
that if these residual quotients can be made arbitrarily small while the corresponding
ω accumulate, their limit is indeed an ITE. Its proof slightly refines the technique from
[9, Theorem 2] to encompass also complex-valued eigenvalues now.

Theorem 2. Assume that {(um, vm, ωm)}m∈N ⊂ H × C fulfill for some 1 ≤ C < ∞
the following conditions:

(1) eigenvalue convergence: ωm → ω such that arg(ω) < 1/4,

(2) uniform interior bound: 1/C ≤
(
‖um‖2L2(D,C2) + ‖vm‖2L2(D,C2)

)
≤ C for all m

large enough,

(3) vanishing boundary misfit:
(
‖um−vm‖

H
3
2 (∂D,C2)

+‖σ(um−vm)ν‖
H

1
2 (∂D,C2)

)
→ 0

when m→ ∞.

Then, ω is an ITE and a subsequence of (um, vm) converges weakly to some eigenfunc-
tion pair.

Proof. By rescaling and redefining (um, vm), if necessary, we can assume without loss
of generality that C = 1 and aim to apply weak compactness in order to construct a
solution candidate which will indeed meet all the required ITE criteria. By assumption
(ii) we know (modulo the extraction of subsequences which we will not relabel in m)
that um ⇀ u and vm ⇀ v in L2(D,C2) which implies that (u, v) ∈ L2(D,C2) ×
L2(D,C2) fulfills the interior conditions of the ITP, or equivalently the PDE system
(1), according to

∫

D
u · (∆∗φ+ ω2φ) dx = lim

m→∞

∫

D
um · (∆∗φ+ ω2

mφ) dx

= lim
m→∞

∫

D
(∆∗um + ω2um) · φ dx = 0

for any bump function φ ∈ C∞
c (D,C2) and with a similar calculus for v. In order

to prove that (u − v) also has the correct ITP boundary data, it suffices to prove
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that the differences (um − vm) are bounded in H2(D,C2) in combination with as-
sumption (iii) because w 7→ w|∂D and w 7→ σ(w)|∂Dν are continuous as operators

H2(D,C2) → H
3

2 (∂D,C2) and H2(D,C2) → H
1

2 (∂D,C2), respectively, due to our
regularity assumptions on ∂D. Noting that (um − vm) are solutions to the inhomoge-
neous Navier system

∆∗(um − vm) + ω2
m(um − vm) = (1− ρ)vm in D ,

elliptic estimates like in [21] tell us that

‖um − vm‖H2(D,C2) ≤ C
(
‖um − vm‖

H
3
2 (∂D,C2)

+ ‖um‖L2(D,C2) + ‖vm‖L2(D,C2)

)
(5)

which therefore gives the desired uniform bound with respect to m.
It remains to show that (u, v) is non-trivial. For this we recall that the embedding

H2(D,C2) →֒ L2(D,C2) is compact which implies (um − vm) → (u − v) strongly in
L2(D,C2). Apparently, (u, v) 6= 0 if ‖u − v‖L2(D,C2) > 0 so we will assume contrarily

that (um − vm) → 0 in L2(D,C2). Then, on the one hand, the bounded sequence

am :=

∫

D
um · vm dx

may be singled out to converge to some a ∈ C from which we know by (ii) with C = 1
that

1

2
≥ |a| ≥ Re a = lim

m→∞

‖um‖2L2(D,C2) + ‖vm‖2L2(D,C2) − ‖um − vm‖2L2(D,C2)

2
≥ 1

2
, (6)

i.e. a = 1/2. Since arg(ω) < 1/4 and ρ 6= 1, we can even conclude |Re a(ω2−ρω2)| > 0.
On the other hand, (3) with exchanged roles of its test functions φ, ψ ∈ C∞(D)

yields the analogon of Green’s second identity

∫

D
ψ ·∆∗φ− φ ·∆∗ψ dx =

∫

∂D
ψ · (σ(φ)ν)− φ · (σ(ψ)ν) ds .

Duality shows that the separated boundary contributions of the approxi-
mate eigenfunctions ‖um‖

H−
1
2 (∂D,C2)

,‖vm‖
H−

1
2 (∂D,C2)

,‖σ(um)ν‖
H−

3
2 (∂D,C2)

and

‖σ(vm)ν‖
H−

3
2 (∂D,C2)

are even uniformly bounded in m thanks to (i)–(iii). Therefore
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we may further compute

0 < |Re a(ω2 − ρω2)|

= lim
m→∞

∣∣∣∣Re
∫

D
(ω2 − ρω2)um · vm dx

∣∣∣∣

= lim
m→∞

∣∣∣∣Re
∫

D
(ω2

mum) · vm − um · (ρω2
mvm) dx

∣∣∣∣

= lim
m→∞

∣∣∣∣Re
∫

D
vm ·∆∗um − um ·∆∗vm dx

∣∣∣∣

= lim
m→∞

∣∣∣∣Re
∫

∂D
vm · (σ(um)ν)− um · (σ(vm)ν) ds

∣∣∣∣

= lim
m→∞

∣∣∣∣Re
∫

∂D
vm · (σ(um)ν)− um · (σ(vm)ν) ds

∣∣∣∣

= lim
m→∞

∣∣∣∣Re
∫

∂D
(vm − um) · (σ(um)ν) + um · (σ(um − vm)ν) ds

∣∣∣∣
≤ lim

m→∞
‖vm − um‖

H
3
2 (∂D,C2)

‖σ(um)ν‖
H−

3
2 (∂D,C2)

+ lim
m→∞

‖σ(vm − um)ν‖
H

1
2 (∂D,C2)

‖um‖
H−

1
2 (∂D,C2)

= 0 ,

which is a contradiction.

In order to establish for fixed m some more qualitative relation between the bound-
ary misfit of some sufficiently approximate eigenfunction pair and its absolute eigen-
value deviation from the actual one, we derive an interconnecting estimate in the
following which can also be seen as practical guiding principle for numerical calcula-
tions. Similar to the acoustic case, see [9, Lemma 5], but now improved for even less
regular shapes, its rigorous validity relies on a critical integral expression which must
not vanish.

Lemma 3. Let (u, v) be an ITP eigenfunction pair with ITE ω and assume that
(ũ, ṽ) ∈ H(ω̃) for some aritrary frequency ω̃. If the integral constraint

∣∣∣∣∣

∫

D
u · ũ− ρv · ṽ dx

∣∣∣∣∣ ≥ ε̃ > 0 (7)

is fulfilled, then there exists a constant C > 0 determined only by the boundary data
of u (or equivalently v) such that

|ω2 − ω̃2| ≤ C

ε̃

√
‖ũ− ṽ‖2

H
3
2 (∂D,C2)

+ ‖σ(ũ− ṽ)ν‖2
H

1
2 (∂D,C2)

. (8)

Proof. Applying Betti’s formula twice, using the identical ITP boundary data for u
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and v, yields

ω2

∫

D
ũ · u− ρṽ · v dx

=

∫

D
−ũ ·∆∗u+ ṽ ·∆∗v dx

=

∫

D
2µǫ(ũ) : ǫ(u) + λdiv ũ div u dx−

∫

D
2µǫ(ṽ) : ǫ(v) + λdiv ṽ div v dx

−
∫

∂D
(ũ− ṽ) · (σ(u)ν) ds

=

∫

D
(∆∗ũ · u+∆∗ṽ · v) dx+

∫

∂D
(σ(ũ− ṽ)ν) · u ds−

∫

∂D
(ũ− ṽ) · (σ(u)ν) ds

= ω̃2

∫

D
ũ · u− ρṽ · v dx+

∫

∂D
(σ(ũ− ṽ)ν) · u ds−

∫

∂D
(ũ− ṽ) · (σ(u)ν) ds

and after rearranging we obtain

(ω2 − ω̃2)

∫

D
ũ · u− ρṽ · v dx =

∫

∂D
(σ(ũ− ṽ)ν) · u ds−

∫

∂D
(ũ− ṽ) · (σ(u)ν) ds .

Taking absolute values gives

∣∣ω2 − ω̃2
∣∣

≤ 1

ε̃

(∫

∂D
|(σ(ũ− ṽ)ν) · u| ds+

∫

∂D
|(ũ− ṽ) · (σ(u)ν)| ds

)

≤ 1

ε̃

(
‖σ(ũ− ṽ)ν‖

H
1
2 (∂D,C2)

‖u‖
H−

1
2 (∂D,C2)

+ ‖ũ− ṽ‖
H

3
2 (∂D,C2)

‖σ(u)ν‖
H−

3
2 (∂D,C2)

)

≤ C

ε̃

√
‖ũ− ṽ‖2

H
3
2 (∂D,C2)

+ ‖σ(ũ− ṽ)ν‖
H

1
2 (∂D,C2)

‖2 ,

where

C :=
√

‖u‖2
H−

1
2 (∂D,C2)

+ ‖σ(u)ν‖2
H−

3
2 (∂D,C2)

.

Duality shows that C <∞ since u solves the Navier equation.

We state a direct consequence with respect to the L2(D,C2)-norm of eigenfunctions
for frequencies ω ∈ C\R.

Corollary 4. If (u, v) is an ITP eigenfunction pair with ω ∈ C\R, then we have that
‖u‖2L2(D,C2) = ρ‖v‖2L2(D,C2).

Proof. Let {(um, vm)}m∈N be a sequence in H(ω) such that wm := (um − vm) →
(u − v) in H2(D,C2), see for example Theorem 8 later. In particular, (um, vm) ∈
H(ω), ‖wm‖2

H
3
2 (∂D,C2)

+‖σ(wm)‖2
H

1
2 (∂D,C2)

→ 0 and the left hand side of (7) converges

because of um = (∆∗wm + ρω2wm)/(ω(1− ρ)) and vm = (∆∗wm + ω2wm)/(ω(1− ρ))
to

‖u‖2L2(D,C2) − ρ‖v‖2L2(D,C2)
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when setting ũ := um and ṽ := vm. Since |ω2−ω2| > 0 by assumption, the right hand
side of (8) forces any uniform bound on ε̃ to vanish in the limit m→ ∞.

The situation is different for ω ∈ R and especially when it is the ITE of smallest
magnitude. In this case, with the additional assumption that ρ > 1 or 0 < ρ < 1
is sufficiently large or small to be made precise next, respectively, we can show that
‖u‖2L2(D,C2) − ρ‖v‖2L2(D,C2) 6= 0 which also guarantees a uniform bound ε̃ > 0 for

approximate eigenfunction pairs (ũ, ṽ) in the vicinity of (u, v) (cf. Corollary 6 later).
To avoid misleading confusion at that point, we want to emphasize that Corollary
4 does not imply the non-existence of some positive constant ε̃ when dealing with
complex-valued ITEs ω admitting a non-vanishing imaginary part.

Theorem 5. Let ω be the smallest real-valued ITE for the scatterer D with constant
density ρ 6= 1. If ρ > 1 is large or 0 < ρ < 1 is small enough, where the corresponding
thresholds depend only on D and the Lamé parameters µ, λ, we have the relations

‖u‖2L2(D,C2) − ρ‖v‖2L2(D,C2) < 0 or ‖u‖2L2(D,C2) − ρ‖v‖2L2(D,C2) > 0 ,

respectively.

Proof. For the sake of presentation we will assume that ρ > 1 since the case 0 < ρ < 1
works structurally similar. Because u and v can be expressed each in terms of their
difference w := u−v by u = (∆∗w+ρω2w)/(ω2(ρ−1)) and v = (∆∗w+ω2w)/(ω2(ρ−
1)), the basic idea of our proof will be to exploit isometry of the Fourier transform
with respect to the single field w to obtain a well-behaved algebraic integrand in terms
of ρ. The fact w ∈ H2

0 (D) then shows that u, v, w extend naturally by zero outside of
D so Plancherel’s identity gives

∫

D
|u|2 − ρ|v|2 dx =

1

(2π)2

∫

R2

|Fu|2 − ρ|Fv|2 dξ

=
1

(2π)2

∫

R2

|F(∆∗w + ρω2w)|2 − ρ|F(∆∗w + ω2w)|2
(ρ− 1)2ω4

dξ

=
1

(2π)2

∫

R2

−|F∆∗w|2 + ρω4|Fw|2
(ρ− 1)ω4

dξ

≤ 1

(2π)2

∫

R2

−c|ξ|4 + ρω4

(ρ− 1)ω4
|Fw|2 dξ .

In the last step we employed the pointwise estimate

|F∆∗w(ξ)|2 ≥ c|ξ|4|Fw(ξ)|2

with c := min{µ, λ + 2µ} > 0 inherited from strong ellipticity. As will be shown
later, we have for the smallest ITE ω = ω(ρ) with density ρ that ρω4 → 0 and

likewise R(ρ) → 0 for ρ → ∞, where R(ρ) := ω 4
√

(2ρ− 1)/c is the solution of p(t) :=
(−ct4 + ρω4)/(ρ− 1)ω4 = −1 in t. With BR(ρ) being the disc centered at the origin of
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radius R(ρ), we split the integral above and exploit monotonicity of p to deduce

∫

BR(ρ)

−c|ξ|4 + ρω4

(ρ− 1)ω4
|Fw|2 dξ +

∫

R2\BR(ρ)

−c|ξ|4 + ρω4

(ρ− 1)ω4
|Fw|2 dξ

≤ p(0)

∫

BR(ρ)

|Fw|2 dξ + p(R(ρ))

∫

R2\BR(ρ)

|Fw|2 dξ

=
ρ

ρ− 1
‖Fw‖2L2(BR(ρ),C2) −

(
‖Fw‖2L2(R2,C2) − ‖Fw‖2L2(BR(ρ),C2)

)

≤
(

ρ

ρ− 1
+ 1

)
‖Fw‖2L2(BR(ρ),C2) − (2π)2‖w‖2L2(D,C2) .

The first summand can be made arbitrarily small in terms of ρ because of

‖Fw‖2L2(BR(ρ),C2) ≤
(
max |Fw|

)2
πR(ρ)2

≤ ‖w‖2L1(D,C2)πR(ρ)
2

≤ ‖w‖2L2(D,C2)R(ρ)
2L2(D) ,

where L2(D) denotes the two-dimensional Lebesgue measure of D. Putting everything
together, we finally obtain

∫

D
|u|2 − ρ|v|2 dx = ‖w‖2L2(D,C2)

((
ρ

ρ− 1
+ 1

)
L2(D)R(ρ)2 − (2π)2

)
< 0

for ρ large enough due to the decay of R(ρ).
As announced for the latter, it remains to show that ρω4 → 0 as ρ → ∞, where

ω is the smallest real-valued ITE of D with density ρ. According to Corollary 1 from
[1], the magnitude of ω can be bounded from above by the smallest ITE from any
included disc Br ⊂ D which thus amounts to show the asymptotics assertion just for
the unit disc as scatterer. In this case, as was derived in the appendix of [14] with an
ansatz for a purely compressional wave instead of its orthogonal shear part that we
will consider now for completion, ω is some ITE corresponding to a radial symmetric
eigenfunction if and only if

det




J1

(
ω
√

1
µ

)
J1

(
ω
√

ρ
µ

)

ω
√

1
µJ

′
1

(
ω
√

1
µ

)
ω
√

ρ
µJ

′
1

(
ω
√

ρ
µ

)

 = 0 , (9)

where J1 is the first Bessel function of order one. This condition can be restated as
finding roots ω of the piecewise continuous function

g(ω) := f(ω)− f(
√
ρω)

which can be recursively decomposed into

f(x) = h

(
x√
µ

)
and h(y) :=

yJ ′
1(y)

J1(y)
.
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Let j1 < j2 be the two smallest positive roots of J1 and choose ρ > 1 large enough to
have j2 < j1

√
ρ. Then set ω1 := j1

√
µ/ρ as well as ω2 := j2

√
µ/ρ and observe that g

is singular at those points, but continuous in between. Also, those poles have different
signs according to

lim
ωցω1

g(ω) = − lim
ωցω1

f(
√
ρω) = −∞ and lim

ωրω2

g(ω) = − lim
ωրω2

f(
√
ρω) = ∞ ,

which follows from the basic facts that J1 < 0 in (j1, j2), J
′
1(j1) < 0 but J ′

1(j2) > 0
and that both f(ω1), f(ω2) are finite. Therefore we can make use of the intermediate
value theorem which guarantees for any large ρ a root ω of g fulfilling ω1 ≤ ω ≤ ω2 or
equivalently the uniform bound j21µ ≤ ρω2 ≤ j22µ as ρ → ∞. In particular, ρω4 → 0
for the same limit procedure which finally proves our lemma.

Finally, we cite a result from [9, Corollary 6] that summarizes the previous findings
for our conceptual ITE recovery approach.

Corollary 6. Let the conditions of Theorem 2 hold for {(um, vm, ωm)}m∈N ⊂ H × C

with ITE ω and eigenfunction pair (u, v) ∈ L2(D,C2)×L2(D,C2). Assume additionally
that

∫

D
(u2 − ρv2) dx 6= 0 . (10)

Then, for sufficiently large m ∈ N, we have (modulo the relabeling of the weakly con-
vergent subsequence)

|ω2 − ω2
m| ≤ C

√
‖um − vm‖2

H
3
2 (∂D)

+ ‖σ(um − vm)ν‖2
H

1
2 (∂D)

,

where C > 0 depends on the boundary data of u (or equivalently v) and the magnitude
of (10).

Proof. (um, vm) ⇀ (u, v) in L2(D,C2) × L2(D,C2) implies with (10) that ε̃ > 0 in
Lemma 3 uniformly for m large enough and thus the existence of C > 0.

Altogether, we have proved that the conditioned process from Theorem 2 for detect-
ing ITEs is spurious free as limiting procedure and provided a constrained a posteriori
estimate for the eigenvalue approximation accuracy at each step m. To meet the con-
ditions therein, we will construct “simple” trial functions in the next section that are
unspecified in (4) so far.

4. The method of fundamental solutions

4.1. The abstract setting

In this section we want to focus on how to generate interior solutions to a given PDE on
the basis of its fundamental solution. A fundamental solution for the free space Navier
system (1) with arguments x 6= y ∈ R2, constant coefficients µ, λ, ̺ and unknown

10



eigenfrequency parameter ω is given by

Φ̺ω2(x, y)

:=Φµ,λ
̺ω2(|x− y|)

:=
i

4µ
H

(1)
0 (ks|x− y|) · I + i

4ω2
∇⊤∇

(
H

(1)
0 (kp|x− y|)−H

(1)
0 (ks|x− y|)

)
, (11)

with wave numbers

k2s :=
̺ω2

µ
, k2p :=

̺ω2

λ+ 2µ

and H
(1)
0 being the first Hankel function of order zero. The indices s and p originate

from the well-known Helmholtz decomposition that divides any properly decaying
solution e = ep + es of the exterior Navier problem into its compressional and shear
wave field. More precisely, ep = (−1/k2p)∇(div e) and es = (−1/k2s)

(
− ∂2(∂1e2 −

∂2e1), ∂1(∂1e2 − ∂2e1)
)⊤

solve

∆es + k2ses = 0 and ∆ep + k2pep = 0 in R
2\D

and are constrained to fulfill Kupradze’s (outgoing) radiation condition in two dimen-
sions

lim
r→∞

√
r(∂res − ikses) = 0 , lim

r→∞

√
r(∂rep − ikpep) = 0

uniformly in all directions of the radial distance r from the origin. In particular, freezing
one of the arguments in (11) such as y without loss of generality, these properties
apply column-wise (and by symmetry of the fundamental matrix also row-wise) to
x 7→ Φ̺ω2(x, y) in R2\{y} for any source point y ∈ R2 and density ̺ = const. Choosing
some simply closed and sufficiently smooth contour Γ ∈ R2\D, called the artificial or
source boundary, we easily see that any coefficient function c : Γ → C2 would generate
a smooth solution of (1) in D by the continuous superposition

x 7→
∫

Γ
Φ̺ω2(x, y)c(y) ds(y) =:

(
Φ̺ω2 ∗|Γ c

)
(x) , (12)

which is the starting point for the MFS. We now refine

H(ω) :=
{
u = Φω2 ∗|Γ cu, v = Φρω2 ∗|Γ cv : (cu, cv) ∈ L2(Γ)× L2(Γ)

}
(13)

from (4) and prove in the following that the resulting approximation space is still
sufficiently dense to finally recover exact eigenfunctions via boundary control. For
this, we need some prerequisites concerning the construction of fundamental solutions
for higher order PDEs. It also shows that the MFS ansatz in (12) for approximating
u and v separately is equivalent to recovering their difference u− v solving

(∆∗ + ω2)(∆∗ + ρω2)(u− v) = 0 (14)

via its synthesized fundamental solution.
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Lemma 7. If Φρω2 and Φω2 are fundamental solutions for the free space Navier
equation (1) with densities ρ and 1, respectively, then the function Φρω2,ω2 :=
(Φρω2 − Φω2)/((1 − ρ)ω2) is a fundamental solution for the fourth order operator
(∆∗ + ω2)(∆∗ + ρω2).

Proof. Let φ ∈ C∞
c (D,C2) be an arbitrary bump function and set Φy

ρω2,ω2(x) :=

Φρω2,ω2(y − x) for some fixed y ∈ R2 (and likewise for its generating fundamental
solutions). Then we can easily check

∫

D
Φy
ρω2,ω2(∆

∗ + ω2)(∆∗ + ρω2) · φ dx

=

∫

D

Φy
ρω2 − Φy

ω2

(1− ρ)ω2
(∆∗ + ω2)(∆∗ + ρω2) · φ dx

=
1

(1− ρ)ω2

∫

D
Φy
ρω2(∆

∗ + ρω2)(∆∗ + ω2) · φ dx

− 1

(1− ρ)ω2

∫

D
Φy
ω2(∆

∗ + ω2)(∆∗ + ρω2) · φ dx

=
∆∗φ(y) + ω2φ(y)

(1− ρ)ω2
− ∆∗φ(y) + ρω2φ(y)

(1− ρ)ω2

= φ(y) ,

which proves the lemma.

We are now ready to prove that for any eigenfunction pair (u, v) of (2) with eigen-
frequency ω lying in the first complex quadrant we can find approximations in H(ω)
with arbitrarily small boundary misfits. In particular, all the recovery criteria from
Theorem 2 can be satisfied for corresponding ITEs.

Theorem 8. Let w ∈ H2(D,C2) be any distributional solution to the fourth order
equation (14) for some frequency ω such that 0 ≤ arg(ω) < π/4 (holds even more
generally for Im ω ≥ 0). Then there exists a sequence of elements (um, vm)m∈N ⊂ H(ω)
from (13) such that (um − vm) =: wm → w in H2(D,C2). If ∂D is of class C1,1, then
in particular ‖wm − w‖

H
3
2 (∂D,C2)

→ 0 and ‖σ(wm − w)ν‖
H

1
2 (∂D,C2)

→ 0.

Proof. Assume w̃ ∈ H̃−2(D,C2), where the latter denotes the negative Sobolev space
with compact support in D identifying the dual space of H2(D,C2), is chosen such
that

∫

D
w̃ · (Φρω2,ω2 ∗|Γ c1 +Φρω2 ∗|Γ c2) dx = 0 (15)

for all (c1, c2) ∈ L2(Γ,C2) × L2(Γ,C2). The integral expression is hereby overloaded
in notation with the corresponding duality pairing and by definition of Φρω2,ω2 from
the previous lemma we see that the kernel of w̃ contains functions of the form (u− v)
with (u, v) ∈ H(ω). Therefore, if we can show that (15) implies

∫

D
w̃ · w∗dx = 0 (16)
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for every distributional solution w∗ ∈ H2(D,C2) of (∆∗ + ω2)(∆∗ + ρω2)w∗ = 0, the
Hahn-Banach theorem would yield the desired density claim since no other extension
is possible.

For this, we define the auxiliary functions w := Φρω2,ω2 ∗|D w̃ ∈ L2(D,C2) ∩
C∞(R2\D,C2) and v := Φρω2 ∗|D w̃ ∈ L2(D,C2) ∩ C∞(R2\D,C2), where the gain
of regularity in D results from the fact that the convolution with Φρω2,ω2 or Φρω2 are
pseudo-differential operators of order −2 due to their logarithmic singularity type.
Rewriting (15), we obtain

∫

Γ
c1(y) · w(y) + c2(y) · v(y) ds(y) = 0

for all (c1, c2) ∈ L2(Γ,C2) × L2(Γ,C2) and setting one of the coefficient functions to
zero, respectively, we may conclude that w|Γ = v|Γ = 0. Using the pointwise estimate

|√r(∂rvp−i(ρω2)vp)(x)| ≤
√
r‖∂r(Φρω2)p−iρω2(Φρω2)p‖H2(x−D,C2×2)‖w̃‖H−2(D,C2), and

similarly for vs, while employing standard differentiation properties and decay esti-
mates for the resulting Hankel functions expansion within the first norm on the right,
we deduce that Kupradze’s radiation conditions are completely inherited by v as con-
volution of the correspondingly radiating fundamental solution and some compactly
supported distribution. By uniqueness of the exterior Navier problem for Im ω ≥ 0
and (∆∗ + ρω2)v = w̃ in the sense of distributions, we may then conclude that v = 0
outside of Γ. Due to analyticity, v even needs to vanish completely in R2\D because
the right hand side of the Navier equation is zero here by assumption. Similarly, we
want to prove in the following that w ∈ H2

0 (D) for justifying its role as a valid test
function later:

Using the definition of Φρω2,ω2 , direct calculations show the distributional relations
(∆∗ + ω2)w = v = (∆∗ + ω2)(Φω2 ∗|D v) as well as (∆∗ + ρω2)w = Φω2 ∗|D w̃ =

(∆∗ + ρω2)(Φω2 ∗|D v). This combines to 0 = ((∆∗ + ρω2) − (∆∗ + ω2))(w − Φω2 ∗|D
v)/(ρ − 1) = w − Φω2 ∗|D v and implies the additional representation w = Φω2 ∗|D v.
The same uniqueness and analyticity reasoning as for v above but with frequency ω2

now yields w = 0 in R2\D again and by a bootstrap argument due to v ∈ L2(D,C2)
we then conclude w ∈ H2

loc(R
2,C2) or equivalently w ∈ H2

0 (D). Therefore we can find
a sequence of bump functions {φk}k∈N such that (∆∗ + ρω2)(∆∗ + ω2)(w − φk) → 0
in H−2(D,C2). Taking then any distributional solution w∗ ∈ H2(D,C2) of (∆∗ +
ω2)(∆∗ + ρω2)w∗ = 0 as mentioned in (16), we may finally compute

∫

D
w̃ · w∗ dx =

∫

D

(
(∆∗ + ρω2)(∆∗ + ω2)w

)
· w∗ dx

= lim
k→∞

∫

D
(∆∗ + ρω2)(∆∗ + ω2)φk · w∗ dx

= 0 ,

where we especially incorporated in the first step that (∆∗ + ρω2)(∆∗ + ω2)w = w̃
in the sense of distributions according to our original definition of w. Since w∗ was
an arbitrary homogeneous solution, the desired density result for the interior domain
is thereby proven. An application of standard trace theorems eventually takes the
approximation result over to the boundary of D in corresponding norms.

In the next section we will focus on the numerical implications of these abstract
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findings and especially present its associated recipe of how to approximate ITEs in
practice.

4.2. The numerical setting

The MFS aims to discretize (12) in terms of a Riemann sum with unknown integration
weights determined in some optimization process which we derive in the following.
For arbitrary frequencies ω and some approximation order m ∈ N we focus on trial
functions defined on D of the form

um(x) =

m∑

j=1

Φω2(x, yj) (c̃u)1≤i≤2,j , vm(x) =

m∑

j=1

Φρω2(x, yj) (c̃v)1≤i≤2,j ,

where {y1, . . . , ym} ⊂ Γ are preselected source points and c̃u, c̃v ∈ C2×m are up to
now unspecified block coefficient vectors. Note (um, vm) are actually pseudo-elements
of H(ω) by using delta-distribution-type coefficient functions cu and cv along Γ, re-
spectively. However, it can be readily seen that they are dense in H(ω) for m→ ∞ in
any interior Sobolev norm, cf. [9] where this was shown for the acoustic framework. In
order to characterize the optimal pair (c̃u, c̃v) ∈ C2×m × C2×m, we will now develop
an MFS-based scheme that is supposed to meet the criteria listed in Theorem 2 from
a numerical perspective. It uses the collocation concept as a discretized representative
for the Sobolev-norm-conditioned quantities involved.

First, we treat the vanishing boundary misfit condition (iii). Therefore we pick
m collocation points {x1, . . . , xm} ⊂ ∂D and consider for fixed ω the constrained
minimization of

(c̃u, c̃v) 7→
m∑

i=1

|um(xi)− vm(xi)|2 .

This optimization must be subject to criterion (ii) in a coherently discretized way for
which we will take quadrature-like sample points {x̂1, . . . , x̂mI

} ⊂ D with mI being
large but fixed and demand

(c̃u, c̃v) 7→
mI∑

i=1

|um(x̂i)|2 + |vm(x̂i)|2 ≈ 1 .

That is, we scale all eigenfunction candidate pairs to some almost constant but non-
vanishing discretized interior norm to guarantee (um, vm) 6= 0 for all ω. Both sums
above can be restated in compact matrix form, for which we define

M(ω) :=




Φ̃ω2 Φ̃ρω2

σ(Φ̃ω2)ν σ(Φ̃ρω2)ν

Φ̂ω2 0

0 Φ̂ρω2


 ∈ C

(4m+4mI)×4m , (17)
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where the upper dense rows correspond to the boundary control matrices

(
Φ̺̃ω2

)
2i−1,2j−1

=
(
Φ̺ω2(xi, yj)

)
1,1

,
(
Φ̺̃ω2

)
2i−1,2j

=
(
Φ̺ω2(xi, yj)

)
1,2

,
(
Φ̺̃ω2

)
2i,2j−1

=
(
Φ̺ω2(xi, yj)

)
2,1

,
(
Φ̺̃ω2

)
2i,2j

=
(
Φ̺ω2(xi, yj)

)
2,2

with 1 ≤ i, j ≤ m and co-normal derivatives affecting only the first arguments on the
right hand side of involved definitions. A similar pattern applies for σ(Φ̺̃ω2)ν. The
diagonal lower part of (17) then similarly embodies the interior samples

(
Φ̺̂ω2

)
2i−1,2j−1

=
(
Φ̺ω2(x̂i, yj)

)
1,1

,
(
Φ̺̂ω2

)
2i−1,2j

=
(
Φ̺ω2(x̂i, yj)

)
1,2

,
(
Φ̺̂ω2

)
2i,2j−1

=
(
Φ̺ω2(x̂i, yj)

)
2,1

,
(
Φ̺̂ω2

)
2i,2j

=
(
Φ̺ω2(x̂i, yj)

)
2,2

,

where now 1 ≤ i ≤ mI and again 1 ≤ j ≤ m. The benefit of this matrix reformulation
is that we can now perform a QR-factorization

M(ω) = QM (ω)RM (ω) =

(
Q(ω)
QI(ω)

)
RM (ω)

with Q ∈ C4m×4m and QI ∈ C4mI×4m, which conveniently reflects the above minimal-
boundary-to-maximal-interior coupling through the unitary property of QM . This ob-
servation goes back to Betcke and Trefethen, see [19], who analyzed Dirichlet eigen-
values with a slightly different ansatz but still via boundary control. Our common
ingredient left is then to find local minima of

ω 7→ min
r∈C4m,|r|=1

|Q(ω)r| =: σ1(ω) . (18)

Those solutions that are (almost) roots for the smallest singular value σ1(ω), see Figure
1 (left), will be denoted by ωm to trace back to the underlying trial space dimension
of (um, vm). Our described solution algorithm will be called modified MFS and its
output, ωm, approximate ITEs. In the spirit of (i) from Theorem 2 we hope them to
converge for m → ∞ also in practice and Lemma 3 would then provide a measure
for their convergence speed in terms of the continuous analogon of σ1(ωm). The next
section will demonstrate this for some exemplary scatterers.

5. Numerical results

We use the modified MFS from the previous section to compute some ITEs for a disc-,
ellipse-, kite- and square-shaped scatterer D whose (collocation) boundaries are given
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Figure 1. Exemplary plots of (18) along the real axis for the disc of radius 0.5 as scatterer generated for
m = 50 (left) and m = 80 (right). Both cases confirm 3 approximate ITEs ω50 within the interval [0, 2].
However, for critically large m the graph gets polluted by ill-conditioning artifacts.

by

∂Dd :=

(
0.5 cos(t)
0.5 sin(t)

)
, t ∈ [0, 2π) ,

∂De :=

(
0.5 cos(t)
sin(t)

)
, t ∈ [0, 2π) ,

∂Dk :=

(
0.75 cos(t) + 0.3 cos(2t)

sin(t)

)
, t ∈ [0, 2π) ,

∂Ds := ∂ ([−0.5, 0.5]× [−0.5, 0.5]) ,

respectively. Note that Ds is actually not covered by our ITE approximation analysis
due to its corners, but still a very typical scatterer feasible for our algorithm since
collocation is invisible with respect to the boundary regularity except for singular
points that need to be excluded. Throughout we fix the constitutive parameters

µ =
1

16
, λ =

1

4
, ρ = 4

which were also used in the context of [14] and therefore serve as independent reference
values for our exemplary MFS-based findings listed in Figure 2. Those approximate
the first four real-valued ITEs from each scatterer and were individually obtained via
the source point boundaries

Γd :=

(
cos(t)
sin(t)

)
= 2 · ∂Dd , t ∈ [0, 2π) ,

Γe :=

(
0.95 cos(t)
1.9 sin(t)

)
= 1.9 · ∂De , t ∈ [0, 2π) ,

Γk :=

(
(1.2 cos(t) + 0.48 cos(2t))

1.6 sin(t)

)
= 1.6 · ∂Dk , t ∈ [0, 2π) ,

Γs :=∂ ([−0.65, 0.65]× [−0.65, 0.65]) = 1.3 · ∂Ds .

The extracted scaling factors {2, 1.9, 1.6, 1.3} were preselected to follow the conclu-
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Shape ITE 1 ITE 2 ITE 3 ITE 4

disc 1.451304027606383 1.704638247023373 1.984530256321993 2.269112085458542
ellipse 1.296728136516 1.302785814026 1.540896035208 1.565151107263
kite 0.947 1.047 1.111 1.235
square 1.3938 1.6182 1.8020 1.9362

Figure 2. Approximations of the first four real-valued ITEs (counting without multiplicity) for some exem-

plary scatterers obtained via the modified MFS with material parameter µ = 1/16, λ = 1/4, ρ = 4: One
clearly sees that the more advanced the shape of the boundary becomes, the less ITE digits can be effectively
recovered.

sions from [9] and approach unity the more scattering shapes seem to deviate from
the disc that is considered as the most promising state. Having thus set all the neces-
sary computational contours for the modified MFS, both the m-dependent collocation
points {x1, . . . , xm} as well as the auxiliary sources {y1, . . . , y2m} were distributed
equiangular on their corresponding boundaries, e.g. equidistant with respect to t if
our representation above allows. However, it is well known that the individual opti-
mization of Γ itself and its source point distribution do have a noticeable impact on the
MFS approximation quality as was shown in [24], but resulting in a more advanced
non-linear problem for each scatterer in total. In contrast, concerning the interior
points, mI = 10 of them were fixed randomly in a centered disc with radius 0.5 as
their overall location and number turns out not to affect the ITE output significantly.

With these input arrangements and the focus on real-valued ITEs first, the modi-
fied MFS can be successfully exploited by incrementing m within 40 ≤ m ≤ 80, where
the lower bound just provided an averaged value for when to expect good results.
However, exceeding the given D-specific threshold for our setup, the graph of (18)
always began to suffer drastically from the intrinsic ill-conditioning effects of the dis-
cretization matrixM(ω) in (17) via impeding oscillations and finally lead to unreliable
approximations apart, see Figure 1 (right). Obtained via the regime in between, we
believe our given cut-off results from Figure 2 to be correct up to that point modulo
round-off errors compared to the exact ITE mantissa since they correspond to the
nonfluctuating digits within the modified MFS output ωm when mր 80. Some exact
reference values for Dd corresponding to rotational-symmetric eigenfunctions can be
obtained by computing roots of (9) which even confirms our approximation for its
smallest ITE to be exact up to machine precision, see Figure 3 for the convergence
history. In general, the recoverable accuracy strongly correlates with the scattering
shape and deteriorates with the existence of corners or concave parts. These technical
observations mostly agree with the ones from the acoustic case analyzed in [9,10] and
only differ in the retarded yet D-specific convergence regime in m for starting the
actual ITE approximations which was about m ≥ 20 before. It manifests the fact that
the eigenfunctions from elasticity are vector-valued and thus numerically slightly more
expensive.

As in the particular scope of this paper, we also want to present some approxima-
tions from the complex-valued eigenvalue spectrum. Therefore Figure 4 plots (18) in
the complex range 0 ≤ Reω ≤ 2.5, −2 ≤ Imω ≤ 2 for the disc Dd and the square Ds

since only their distribution of ITEs seems not that dense among our analyzed scatter-
ers according to Figure 2 and is thus better suited for broad contour visualizations. We
can immediately see that ITEs are correctly displayed in conjugated pairs and as an ex-
ample the closest of them with respect to the positive imaginary axis are computed for
the two scatterers to be 1.8624+0.3104i and 1.987178187576699+0.283125784408650i,
respectively. The correctness of all given ITE digits for Dd can even be confirmed again
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Figure 3. Exponential decay of the modified MFS with respect to the absolute ITE deviation from
1.451304027606383 being the smallest real-valued one of the disc with radius 0.5 as scatterer. A similar behavior
for the boundary data misfit of the corresponding approximate eigenfunctions in terms of the smallest singular
value is shown. Their linear correlation in the plot confirms the continuous analogon from Lemma 3.

by comparing with the correspondingly coinciding root of (9). Regarding accuracy, the
modified MFS does not show any remarkable difference for its extension to the upper
half space of the complex plane. However, although the plot indicates a certain axial
symmetry with below, one clearly sees that inaccuracies due to large condition numbers
of the underlying matrix (17) dominantly propagate from the lower half space upwards
for increasing m, giving a first hint where the oscillations in Figure 1 (right) originate
from. Fortunately, ITEs always arise in conjugated pairs and because of Theorem 8
we even know that restricting to complex numbers with non-negative imaginary part
within our investigations, as already implemented in our initial ansatz (4) and (13), is
not limiting at all.

To get a rough impression about how competitive our method is compared to
others, we use the approximation results for real-valued k2 from the paper [14] in
which the authors also analyzed the scatterers Dd and Ds but via special finite
element methods. With a mesh size of h ≤ 0.0125, they obtained the approxi-
mations k2d ≈ 2.110723 and k2s ≈ 1.9428781 for the smallest ITE squared of the
disc and the square, respectively. Allowing for possible round-off deviations in the
last digit within our corresponding cut-off values, we obtain the tolerance ranges
k2d ∈ [2.106283380546506, 2.106283380546512] and k2s ∈ [1.9423, 1.9429] by setting at
most m = 80 which may be converted via a boundary partitioning to a collocation
point distance of the same order as the alternative mesh size. While the results regard-
ing Ds are of the same order for both solution approaches, the modified MFS clearly
dominates in accuracy for Dd and is therefore believed to do so for slightly perturbed
scatterers D, too.
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Figure 4. Contour extract from the complex plane evaluating (18) for the unit square (below) and the disc
of radius 0.5 (above) as scatterers with m = 45 (left) and m = 55 (right), respectively. Approximate ITEs are
denoted by the centers of emerging concentric circles and spoilt primarily from the lower half space through
the ill-conditioning artifacts already encountered in Figure 1.

6. Conclusion

We analyzed the method of fundamental solution in a stabilized version for the com-
putation of complex-valued elastic transmission eigenvalues in two dimensions. Our
theoretical studies show that the short algorithm shall produce spurious-free results
in the limit whose approximation error per step we could quantify in terms of some
discretized residual output value. Our numerical experiments confirm these expecta-
tions in practice within some scatterer-specific collocation point regime for which the
method’s feasibility is unaffected from ill-conditioning pollutions. This was tested for
a collection of scatterers whose boundaries are easily-parametrizable. In accordance
with the conclusions from previous works that analyzed our algorithm in the context
of related transmission problems but restricted to real-valued eigenvalues so far, the
best results, including also the complex spectrum from now, can still be obtained for
the unit disc. The more the actual scattering shape then deviates from the disc, the
less accurate approximations are finally achievable while even more collocation points
are needed in total. However, depending on the choice of fundamental solution for
generating the trial functions, different areas of the complex spectrum (in our case
the lower half space) should be avoided as initial guess input for the algorithm due to
ill-conditioning effects which are, however, not that restrictive because all eigenvalues
arise in conjugated pairs. Generally, since the source boundary necessary for the MFS
setup was individually preselected by intuition for simplicity, even more promising
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approximations can be achieved by its optimization which was, however, not covered
in the scope of this paper. As a conclusion, the modified MFS is especially effective
for regular convex domains and dominates here over many competitive methods in the
general context of transmission eigenvalue problems.
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