001     873619
005     20240610121034.0
024 7 _ |a 10.1016/j.bpj.2019.12.006
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a 2128/24329
|2 Handle
024 7 _ |a altmetric:73081199
|2 altmetric
024 7 _ |a pmid:31916943
|2 pmid
024 7 _ |a WOS:000511291400016
|2 WOS
037 _ _ |a FZJ-2020-00862
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Cerminara, Michele
|0 P:(DE-Juel1)166090
|b 0
245 _ _ |a Mapping Multiple Distances in a Multidomain Protein for the Identification of Folding Intermediates
260 _ _ |a Bethesda, Md.
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1584362424_19473
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The investigation and understanding of the folding mechanism of multidomain proteins is still a challenge in structural biology. The use of single-molecule Förster resonance energy transfer offers a unique tool to map conformational changes within the protein structure. Here, we present a study following denaturant-induced unfolding transitions of yeast phosphoglycerate kinase by mapping several inter- and intradomain distances of this two-domain protein, exhibiting a quite heterogeneous behavior. On the one hand, the development of the interdomain distance during the unfolding transition suggests a classical two-state unfolding behavior. On the other hand, the behavior of some intradomain distances indicates the formation of a compact and transient molten globule intermediate state. Furthermore, different intradomain distances measured within the same domain show pronounced differences in their unfolding behavior, underlining the fact that the choice of dye attachment positions within the polypeptide chain has a substantial impact on which unfolding properties are observed by single-molecule Förster resonance energy transfer measurements. Our results suggest that, to fully characterize the complex folding and unfolding mechanism of multidomain proteins, it is necessary to monitor multiple intra- and interdomain distances because a single reporter can lead to a misleading, partial, or oversimplified interpretation.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schöne, Antonie
|0 P:(DE-Juel1)156122
|b 1
700 1 _ |a Ritter, Ilona
|0 P:(DE-Juel1)131979
|b 2
|u fzj
700 1 _ |a Gabba, Matteo
|0 P:(DE-Juel1)140208
|b 3
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.bpj.2019.12.006
|g p. S0006349519343887
|0 PERI:(DE-600)1477214-0
|n 3
|p 688-697
|t Biophysical journal
|v 118
|y 2020
|x 0006-3495
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/Invoice_OAD0000023789.pdf
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/Supporting%20Information.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/1-s2.0-S0006349519343887-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/Supporting%20Information.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/1-s2.0-S0006349519343887-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873619/files/Invoice_OAD0000023789.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:873619
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131979
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131961
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21