| Hauptseite > Publikationsdatenbank > Long-Range Neuronal Coordination Near the Breakdown of Linear Stability > print |
| 001 | 873626 | ||
| 005 | 20240313094942.0 | ||
| 037 | _ | _ | |a FZJ-2020-00869 |
| 100 | 1 | _ | |a Layer, Moritz |0 P:(DE-Juel1)174497 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a Bernstein Conference 2019 |c Berlin |d 2019-09-17 - 2019-09-20 |w Germany |
| 245 | _ | _ | |a Long-Range Neuronal Coordination Near the Breakdown of Linear Stability |
| 260 | _ | _ | |c 2019 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1580905314_7541 |2 PUB:(DE-HGF) |x Other |
| 520 | _ | _ | |a Experimental findings suggest that cortical networks operate in a balanced state [1] in which strong recurrent inhibition suppresses single cell input correlations [2,3]. The balanced state, however, only restricts the average correlations in the network, the distribution of correlations between individual neurons is not constrained. We here investigate this distribution and establish a functional relation between the dynamical state of the system and the variance of correlations as a function of cortical distance. The former is characterized by the spectral radius, a measure for how strong a signal is damped while traversing the network. To this end, we develop a theory that captures the heterogeneity of correlations across neurons. Technically, we derive a mean-field theory that assumes the distribution of correlations to be self-averaging; i.e. the same in any realization of the random network. This is possible by taking advantage of the symmetry of the disorder-averaged [4] effective connectivity matrix. We here demonstrate that spatially organized, balanced network models predict rich pairwise correlation structures with spatial extent far beyond the range of direct connections [5]. Massively parallel spike recordings of macaque motor cortex quantitatively confirm this prediction. We show that the range of these correlations depends on the spectral radius, which offers a potential dynamical mechanism to control the spatial range on which neurons cooperatively perform computations. |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 0 |f POF III |
| 536 | _ | _ | |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240) |0 G:(GEPRIS)368482240 |c 368482240 |x 1 |
| 536 | _ | _ | |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) |0 G:(DE-Juel1)HGF-SMHB-2014-2018 |c HGF-SMHB-2014-2018 |x 2 |f MSNN |
| 536 | _ | _ | |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |c PHD-NO-GRANT-20170405 |x 3 |
| 536 | _ | _ | |a Smartstart - SMARTSTART Training Program in Computational Neuroscience (90251) |0 G:(EU-Grant)90251 |c 90251 |x 4 |
| 700 | 1 | _ | |a Dahmen, David |0 P:(DE-Juel1)156459 |b 1 |u fzj |
| 700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 2 |u fzj |
| 700 | 1 | _ | |a Deutz, Lukas |0 P:(DE-Juel1)168574 |b 3 |
| 700 | 1 | _ | |a Voges, Nicole |0 P:(DE-Juel1)168479 |b 4 |u fzj |
| 700 | 1 | _ | |a Grün, Sonja |0 P:(DE-Juel1)144168 |b 5 |u fzj |
| 700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 6 |u fzj |
| 700 | 1 | _ | |a Dabrowska, Paulina |0 P:(DE-Juel1)171408 |b 7 |u fzj |
| 700 | 1 | _ | |a Papen, Michael von |0 P:(DE-HGF)0 |b 8 |
| 909 | C | O | |o oai:juser.fz-juelich.de:873626 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174497 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156459 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144806 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)168479 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144168 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144174 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171408 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2019 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 2 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|