001     873629
005     20240313103124.0
024 7 _ |a arXiv:1905.12116
|2 arXiv
024 7 _ |a 2128/24251
|2 Handle
024 7 _ |a altmetric:61268544
|2 altmetric
037 _ _ |a FZJ-2020-00872
100 1 _ |a Liu, Tianlin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Harnessing Slow Dynamics in Neuromorphic Computation
|f - 2019-05-30
260 _ _ |c 2019
300 _ _ |a 53 p.
336 7 _ |a Output Types/Supervised Student Publication
|2 DataCite
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a MASTERSTHESIS
|2 BibTeX
336 7 _ |a masterThesis
|2 DRIVER
336 7 _ |a Master Thesis
|b master
|m master
|0 PUB:(DE-HGF)19
|s 1580905475_10825
|2 PUB:(DE-HGF)
336 7 _ |a SUPERVISED_STUDENT_PUBLICATION
|2 ORCID
500 _ _ |a Master thesis of Tianlin LiuLiu was supported by the FZJ through the project SMARTSTART Computational Neuroscience, DB001423.
502 _ _ |a Masterarbeit, Jacobs University Bremen, 2019
|c Jacobs University Bremen
|b Masterarbeit
|d 2019
520 _ _ |a Neuromorphic Computing is a nascent research field in which models and devices are designed to process information by emulating biological neural systems. Thanks to their superior energy efficiency, analog neuromorphic systems are highly promising for embedded, wearable, and implantable systems. However, optimizing neural networks deployed on these systems is challenging. One main challenge is the so-called timescale mismatch: Dynamics of analog circuits tend to be too fast to process real-time sensory inputs. In this thesis, we propose a few working solutions to slow down dynamics of on-chip spiking neural networks. We empirically show that, by harnessing slow dynamics, spiking neural networks on analog neuromorphic systems can gain non-trivial performance boosts on a battery of real-time signal processing tasks.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Smartstart - SMARTSTART Training Program in Computational Neuroscience (90251)
|0 G:(EU-Grant)90251
|c 90251
|x 1
588 _ _ |a Dataset connected to arXivarXiv
856 4 _ |u https://juser.fz-juelich.de/record/873629/files/1905.12116.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873629/files/1905.12116.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873629
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a master
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21