arXiv:1905.12116v1 [cs.LG] 28 May 2019

JACOBS
UNIVERSITY

Harnessing Slow Dynamics in Neuromorphic
Computation

Tianlin Liu

May 30, 2019

Department of Computer Science and Electrical Engineering
Jacobs University Bremen
Bremen, 28759
Germany.

Supervisor:
Prof. Dr. Herbert Jaeger
Co-reviewer:
Prof. Dr. Marc-Thorsten Hiitt

Submitted in partial fulfillment of the requirements
for the degree of master of science in Data Engineering.

Copyright (©) 2019 Tianlin Liu

This research was sponsored by the European Horizon 2020 project NeuRAM3 (grant number 687299), a Jacobs
University Graduate Scholarship, and a SMARTSTART1 fellowship provided by the Bernstein Network and the Volk-
swagen Foundation.

Keywords: Neuromorphic computation, Spiking neural networks, Reservoir computing

Abstract

Neuromorphic Computing is a nascent research field in which models and devices
are designed to process information by emulating biological neural systems. Thanks
to their superior energy efficiency, analog neuromorphic systems are highly promising
for embedded, wearable, and implantable systems. However, optimizing neural net-
works deployed on these systems is challenging. One main challenge is the so-called
timescale mismatch: Dynamics of analog circuits tend to be too fast to process real-
time sensory inputs. In this thesis, we propose a few working solutions to slow down
dynamics of on-chip spiking neural networks. We empirically show that, by harness-
ing slow dynamics, spiking neural networks on analog neuromorphic systems can gain
non-trivial performance boosts on a battery of real-time signal processing tasks.

Acknowledgments

I am indebted to many people who have been instrumental in my master level
study. First and foremost, my supervisor Professor Herbert Jaeger provided me in-
valuable guidance, and at the same time, tremendous research freedom. I would like
to express my sincere gratitude to him. I would also like to thank my colleagues in the
MINDS research group, Fatemeh Hadaeghi and Xu He, for productive collaborations
and inspiring scientific discussions. I am grateful to Professor Marc-Thorsten Hiitt for
being the co-reviewer of this thesis.

I have greatly benefited from Roberto Cattaneo and Professor Giacomo Indiveri
(Institute of Neuroinformatics, Zurich), our NeuRAM3 EU project collaborators. Many
research efforts reported in this thesis were initialized based on a fruitful research visit
to Zurich hosted by Roberto Cattaneo and Professor Indiveri, without whom this thesis
would not have been possible.

I appreciate Jodo Sedoc and Professor Lyle Ungar at the University of Pennsylva-
nia, who hosted me for a summer internship. My internship experience there enabled
me to expand my conceptions on various practically relevant machine learning tasks
such as natural language processing.

Financially, I gratefully acknowledge the funding of the NeuRAM3 project of the
European Horizon 2020 programme, a graduate scholarship provided by Jacobs Uni-
versity, and a SMARTSTART1 fellowship received from the Bernstein Network and
the Volkswagen Foundation.

At a personal level, I thank my parents who unfailingly support me exploring dif-
ferent scientific disciplines throughout my student career. My special thanks go to Jens
Pieper, my host-father at Bremen, who provides me with continuous encouragement
(together with Brotchen, Sinalco, and Kartoffelsuppe) throughout my years of study
at Jacobs.

Contents

1 Introduction
1.1 Neuromorphiccomputing i ittt
1.2 Recurrent network of spiking neurons L.
1.2.1 LIFneurons it e
1.2.2 Recurrent network of LIFneurons
1.2.3 Supervised training for RNN of LIFneurons
1.3 Learning algorithms for neuromorphic computation
1.3.1 Deep learning for neuromorphic hardware
1.3.2 Reservoir computing for neuromorphic hardware
1.4 ThesiSOVEIVIEW o ot e
1.5 Usedsources i i e
1.6 Research reproducibility

2 Dynap-se Neuromorphic Microchips
2.1 Dynap-seboard e
2.1.1 On-chipneurons
2.1.2 On-chipneuralnetworks,
2.2 Conducting numerical experiments on Dynap-se
2.2.1 A general routine for performing numerical experiments
2.2.2 Practical implementation of the routine

3 Slowing down Neuronal Dynamics by Modifying Properties of Individual Neurons
3.1 Heuristics of parameter selection
3.2 Numerical experiments e e
3.2.1 Experiment setup: baseline reservoir and tuned reservoir
3.22 ThePulseexperiment
323 ThePulse-Chirpexperiment
324 TheRamp + Sineexperiment

4 Slowing down Neuronal Dynamics by Modifying the Reservoir Topology
4.1 Reservoir Transfer
4.1.1 Theteachernetwork
4.1.2 Thestudentnetwork

4.1.3 Transfer dynamics of the teacher network to the student network

4.2 Training on-chip reservoir
4.3 ECG monitoring experiment

Conclusion

Parameters Values
A.1 Default Parameters
A.2 Tuned Parameters

A.3 Reservoir responses in Ramp + Sine experiment

Vi

List of Figures

2.1 The multi-score structure of a Dynap-se microchip [Moradi et al., 2017].

3.1 Visualization of the reservoir responses driven by a Pulse input. The Pulse in-
put signals are visually illustrated with green vertical bars. For each of the default
and tuned reservoir, we randomly choose 100 neurons and plot their neuronal re-
sponses (exponentially smoothed spikes) against time. Left: responses of neurons
from the default reservoir. Right: responses of neurons from the tuned reservoir.

3.2 Visualization of three repetitions of input pulses and their target chirp signals. The
pipeline of the Pulse—-Chirp experiment is to (i) drive a reservoir with the input
spike train (green vertical bars) and (ii) linearly map reservoir responses to the
target chirp signal (red dashed line). For the linear map to work, the reservoir
responses need to attain a certain length of memory.

3.3 Visualization of the reservoir responses of a sequence of short pulses (0.5 seconds)
gapped by long periods of silence (3 seconds). The sequence of pulses is visually
illustrated with green vertical bars. For each of the default and tuned reservoir,
we randomly choose 100 neurons and plot their neuronal responses (exponentially
smoothed spikes) against time. Left: responses of the default reservoir. Right:
responses of the tuned reservoir. L Lo

3.4 Training and testing results of the Pul se—Chi rp regression task using the default
and the tuned reservoir. Figures in the first column are training (first row) and
testing (second row) results of a default reservoir; in a similar layout, figures in
the second column are training and testing results of a tuned reservoir. The input
sequences of spikes are illustrated with Green vertical bars; the target chirp signal
is shown in red, and the predictions of the target chirp signal (linearly read out
from reservoir) are in blue. Numbers inset are the mean square errors (MSEs) for
training or testing datasets.

3.5 The Ramp + Sine and Sine signals and their respective converted input spike
trains. The green vertical bars indicate the spikes which are assumed to be gen-
erated by an excitatory input neuron and the red vertical bar indicate the spikes
which are assumed to be generated by an inhibitory input neuron. Left panel: the
converted spike train from the Ramp + Sine signal. Right panel: the converted
spike train from the Sine.

vii

3.6

4.1

A.l

Training and testing results of the Sine—-Ramp classification task using the default
and the tuned reservoir. Figures in the first column are training (first row) and
testing (second row) results of a default reservoir; in a similar layout, figures in
the second column are training and testing results of a tuned reservoir. The thick
red line and the thick green line at the y-axis 1 or O represent the regression targets
for Ramp+Sine and Sine, respectively. The orange dots represent the predicted
score for Ramp+Sine, and the green dots represent the predicted score for Sine.
Numbers inset are predicted accuracies for training or testing datasets, where the
accuracy is defined as the ratio of the number of corrected predicted bins (each bin

lasts for 0.01 seconds). e

Two patterns of heartbeats in an ECG signal. Left panel: a normal heartbeat. Right

panel: aPVCheartbeat.

Visualization of the reservoir responses when driven by input signal from Ramp
+ Sine experiment. For each of the default and tuned reservoir, we randomly
choose 100 neurons and plot their neuronal responses (exponentially smoothed
spikes) against time. Left: responses of the default reservoir. Right: responses of

the tuned reServoir.

viii

List of Tables

4.1 PVC detection results on testingdata 32
A.1 The default parameters of Dynap-se. These parameters can be configured by press-

ing “set default spiking biases” button on the GUI of Dynapse. B4
A.2 The tuned parameters of Dynap-se. Compared to the default parameters in Table

[A.1] the modified ones are marked inred.

X

Chapter 1

Introduction

Computers are ubiquitous in our world, from heavy data crunchers such as supercomputers to
wearable devices such as smartwatches. Modern computers have equipped humans with unprece-
dented ability to process information in ways unimaginable when they were first widely available
a few decades ago. Indeed, even today’s cell phones have more computational power than com-
puters used in the spaceflight Apollo 11 [Kaku, 2012, Chapter 1], which brought two astronauts
to the moon and took them back. With these dazzling advances in computer technologies, we are
conditioned to expect that every few years, new generations of computers will always be much
faster, smaller, and cheaper.

Contrary to this accustomed expectation, however, evidence has shown that the computation
power of commonly used von Neumann-type computers [von Neumann, |1945] will eventually
reach a fundamental physical limit. This is due to the combined effects of the imminent end of
Moore’s law [Kishl, 2002, (Cavin et al., 2012, |Waldrop, 2016], the massive energy demands of
transistors after the breakdown of Dennard’s scaling [Dennard et al., 1974]], and the communica-
tion bottleneck between central processing units (CPUs) and memory known as the von Neumann
bottleneck [Backus, [1978]. Once these ceilings are reached, the technological advances of today’s
computers will inevitably flatten out. Hence, there is a compelling need for rethinking computation
with paradigms other than the von Neumann architecture.

Complementary to von Neumann architecture, the neuromorphic computation paradigm [Mead,
1990] offers one promising route toward designing high-performance and energy-efficient com-
puting devices. Using brain circuits as a source for guidance, neuromorphic systems have a few
important advantages when compared to von Neumann systems. Among them, the primary one
is the former’s superior energy efficiency. Whilst von Neumann systems have CPUs separated
from memory components, neuromorphic systems have these elements co-localized. For example,
circuit-based synapses on neuromorphic hardware are both the sites for storing memory and for
performing computation [Indiveri and Liu, 2015, Qiao and Indiveri, [2017]. These co-localized
components effectively decrease the energy consumption induced by memory transfer. For this
reason, neuromorphic systems are ideal candidates for wearable devices [Zbrzeski et al., 2016],
brain-machine interface modules [Shaikh et al., [2019], speech processing [Braun and Liu, 2019],
mobile robot [Kreiser et al., 2018], and internet of things (IoT) [Gao et al., 2019] applications,
where low energy consumption is highly desirable [Birmingham et al., 2014, [Indiveri and Liu,

1

2015/ |[Furber, 2016].

Despite their notable energy efficiency advantages, most of the neuromorphic devices have
not stepped far out of a few pioneering laboratories and industrial research groups. This situation
particularly applies to analog neuromorphic hardware, which exhibits a few challenging material
properties hindering them from practical applications. These challenging properties include:

® Device mismatch: Due to fabrication imperfections, analog circuits tend to exhibit variabili-
ties and inhomogeneities [Q1ao et al., 2015].

® Low bit parameter values: Unlike those of software simulations, programmable parameters
of analog neuromorphic hardware usually have bounded ranges, limited resolutions, and low
precisions [Chicca et al.,|2014]. Additionally, oftentimes parameters need to be set globally
to a population of neurons but not on the individual neuron level [Moradi et al., 2017]].

e Timescale mismatch: Dynamics of analog systems tend to be too fast to process real-time
input signals [Chicca et al., 2014]].

Among these difficulties, the timescale mismatch problem is particularly troublesome. To be
successfully used in application domains such as wearable biosignal monitoring tasks, neuromor-
phic systems need to have slow timescales which are comparable to those of biological signals.
Only in this way can the information contained in input signals be synchronized and integrated
using the hardware in real-time. This slow timescale requirement, however, cannot be easily at-
tained with current analog neuromorphic technologies [Chicca et al.,|2014]]. Many neuromorphic
systems, therefore, use accelerated timescales. Although these accelerated devices are ideal for
simulations that take a very long time in biological terms [Schemmel et al., 2007], they are unsuit-
able for real-time signal processing tasks.

Written under the NeuRAM3 EU Horizon 2020 projec this thesis aims to provide a few
working solutions that alleviate the above-mentioned limited timescale problem exhibits by an
real-time analog neuromorphic device named Dynap-se [Moradi et al., [2017]] for real-time sig-
nal processing tasks. In this introduction chapter, we first provide an overview of the landscape
of neuromorphic hardware. We then review some fundamental computational neuroscience and
supervised machine learning notions. Based on these notions, we take an overview of common
approaches used to configure neuromorphic devices. The structure, contributions, used sources,
and research reproducibility of this thesis are discussed at the end of this chapter.

1.1 Neuromorphic computing

The term neuromorphic computation, coined by Carver Mead [Mead, |1990], refers to the use of
electronic circuits that emulates biological nervous systems to implement computational mecha-
nisms. In this section, we present a short overview of different types of neuromorphic hardware.
Neuromorphic systems can be divided into different categories based on different criteria. |Ize-
boudjen et al. [2014] provided an overview of the taxonomies of neuromorphic systems. Despite
the varieties of taxonomies, the most common classification criterion is based on the systems’ im-

'http://www.neuram3.eu/

http://www.neuram3.eu/

plementation types, i.e., the types of signals processed in circuits. Using this criterion, we can di-
vide neuromorphic hardware into three broad categories: analog, digital, and mixed analog/digital.

Digital neuromorphic hardware share a few characteristics of the “conventional” von Neumann-
type computers: they use digital transistors to implement boolean-logic gates (such as AND, OR,
and NOT), operate with discrete values, and usually employ clocks for synchronization in circuits.
Different from conventional computers, however, digital neuromorphic systems are specifically
designed to simulate large-scale spiking neural networks by mimicking their biological function-
alities. Due to their specializations, circuits on digital neuromorphic hardware consume far lower
energy when compared to conventional computers. Additionally, thanks to their digital nature,
these neuromorphic systems usually have high precisions and replicable arithmetics, leading to
greater user accessibility and fewer computational challenges than analog implementations. How-
ever, numerical stabilities of digital neuromorphic systems do not come without a cost: They tend
to consume more energy than analog neuromorphic devices [Indiveri and Liu, 2015]]. Examples
of digital neuromorphic hardware include TrueNorth [Merolla et al., 2014], SpiNNaker [Painkras
et al., 2012]], and Loihi [[Davies et al., 2018]].

Analog neuromorphic implementation is another variant of neuromorphic hardware. In fact,
the term “neuromorphic,” when originally defined [Mead, |1990], refers to analog neuromorphic
systems. These systems use physical characteristics of analog circuits [Andreou and Boahen,
1996]] to mimic the behaviors of neurons, synapses, and other structures [Liu et al., 2002]. To
emulate these behaviors, sub-threshold analog circuits require fewer transistors than their digital
counterparts [Indiveri and Liu, 2015]. On-chip spiking neurons on analog neuromorphic hardware
are typically asynchronous, acting as independent processors without a central clock. These prop-
erties make analog systems closely resemble real biological systems. However, analog systems
tend to be noisy, raising challenges for computational algorithms. For example, when sending all
neurons in a population constant injection currents, the spiking frequencies of individual neurons
tend to vary. Ning et al.| [2015] reported 9.4% variations of spike-frequency variations under the
constant injection currents when using the ROLLS processor. Although the variation coefficient
9.4% is considered to be low when compared to other neuromorphic hardware [Ning et al., 2015],
this variability still rules out a large portion of state-of-the-art machine learning algorithms, which
are based on floating-point precision operations.

Analog neuromorphic hardware can be further categorized into two classes: real-time and
accelerated [Pfeil, 2015, Chapter 1]. In real-time hardware, synapses and neurons operate in
timescales similar to their biological counterparts. These systems are usually designed for applica-
tions in bio-signal processing, prosthetics, and robotics tasks. In accelerated systems, timescales of
the hardware network are usually 103 to 10* faster than their biological counterparts [Indiveri and
Liu, 2015]. These systems are suited for applications that take a very long time in biological terms
[Indiveri and Liul 2015]], e.g., modeling several years of childhood development [Furber, 2016].
Examples of accelerated analog neuromorphic hardware include Spikey [Briiderle et al., 2010] and
BrainScaleS [Schemmel et al.,[2012]. Examples of real-time analog neuromorphic devices include
ROLLS [Ning et al., 2015]] and Dynap-se [Moradi et al.,|[2017].

Besides digital and analog neuromorphic systems, there exist analog/digital mixed systems.
Examples of these systems include Neurogrid [Benjamin et al., 2014] and Braindrop [Neckar et al.,

3

2019].
Our working device used in this thesis is Dynap-se [Moradi et al., 2017]], an analog and real-
time neuromorphic device. We will introduce its features in details in Chapter [2]

1.2 Recurrent network of spiking neurons

In the previous section, we have reviewed different types of neuromorphic hardware. Although
these types of hardware are designed based on different principles, they all perform computation
with on-chip spiking neural networks. To work with neuromorphic hardware, it is therefore nec-
essary to understand a few basic notions related to spiking neural networks. In this section, we
briefly review the leaky integrate-and-fire neuron model, which is arguably the simplest form of
a neuron model. We then explain how to connect these neurons into a recurrent neural network.
Our presentation in this section mainly follows [Gerstner et al., 2014, Chapter 1] and [Nicola and
Clopath, 2017].

1.2.1 LIF neurons

The dynamics of a leaky integrate-and-fire (LIF) [Lapicque, 1907] neuron with index by ¢ at the
time ¢ can be formulated by

dv;
rvd—i = — [0i(t) — Vewd] + RL(1) (1.1)
If ’Uz(t) > 19,

then v;(t) == Uregt, (1.2)

where v; is the membrane potential of the neuron, /; is the input current of the neuron, R is the
membrane resistance, 7, is the membrane time constant, v, is the resting potential, and ¥ is the
firing threshold. Equation (1.1|describes the leaky integrator dynamics in the sub-threshold regime
of a neuron, i.e., in the time periods between two consecutive spikes. Equation defines a reset
mechanism: Whenever the membrane potential v; crosses the firing threshold 1, v; is set to be the
resting potential vyeg.

The spike train produced by the neuron ¢ at the time ¢ can be denoted by

sit) = 8t —t}), (1.3)
“}
where t} are the firing times of the neuron ¢ and J(-) is a Dirac delta function.

1.2.2 Recurrent network of LIF neurons

Following [Nicola and Clopath, 2017], we now formalize how LIF neurons communicate with each
other via their spike induced synaptic currents, giving rise to a recurrent neural network (RNN).

4

The dynamics of synaptic currents r; induced by a spike train s; of neuron ¢ can be written as

Tt

where 7, is the synaptic time constant.

For a post-synaptic neuron indexed by ¢, each pre-synaptic neuron indexed by j contributes its
spike induced synaptic currents 7; to I;. Assuming that these contributions are linear, we write the
synaptic currents /;(t) as

= —ri(t) + si(t), (1.4)

J

where W;; are real values specifying the magnitude of the spike induced currents arriving at neuron
1 from neuron j and /) is a constant current set near or at the rheobase (threshold to spiking) value
as used in [Nicola and Clopathl 2017].

Plugging I;(¢) in Equation|1.5|back to Equation we see the sub-threshold dynamics of the
neuron ¢ under the influence of its pre-synaptic neurons can be re-written as

d’Ui
Ty
dt

= — [0i(t) = Vres] + R Y Wijr;(t) + RI,. (1.6)
J
To take the reset mechanism into account, we add an additional term in Equation[I.6|to specify
the full dynamics of membrane potential of a LIF neuron:

dvi
Tv% = — [Ul(t) - Urest] + RZ Wijrj(t) + RI() — Osz(t) (17)
J
where 0 := 1 — v is the difference between spiking threshold) and reset potential vyeg.
Using more compact matrix notations, assuming that there are /N LIF neurons contributing to
the recurrent dynamics, we can write the network as

T,V = — [V(t) — Vyest) + RWr(t) + RIy — 0s(t),

) (1.8)

7T = —r(t) + s(t),

where v, r, v, r, and s are all /N-dimensional vectors whose ¢-th entries are %, %,
Viest 1S @ vector with all entries being v, and I is a vector with all entries being [y; W €
is a recurrent connectivity matrix whose (¢, j)-th entry is W;;.

Note that, the network in Equation [I.§]is an autonomous system where no external input is
defined. To deal with input-driven systems, we assume that at each time ¢, we are given an external
input signal taking values as a m-dimensional real-valued vector u. With this assumption, we add

another term in Equation [1.8|to take external driving signal into consideration

Vi, Tis and Sis
RNXN

T,V = — [V(1) = Veest]| + W™u(t) + RWr(t) + RI, — 0s(t),

7,1 = —r(t) + s(t), (1.9

where Wit € RV*™ ig an input weight matrix.

To reduce the number of parameters in Equation |1.9|and make things simpler, we make addi-
tional assumption that v, = 0 and R = 1 as done in [Nicola and Clopath, 2017]] and [Neftci et al.,
2019]]. This reduces the RNN formalism into

¥ = =v(t) + Whu(t) + Wr(t) +Io — 0s(t), (1.10)

Equation [1.10] specifies a RNN with LIF neurons. We remark that, however, this formulation
is by no means the only possible version. In fact, most of the existing RNN architectures of LIF
neurons (e.g., [Huh and Sejnowski, 2018} Bellec et al., 2018| Neftci et al., [2019]) use slightly
different formalisms. For example, Neftci et al.| [2019] use recurrent weights that act on spike
trains of pre-synaptic neurons rather than on spike-induced currents of pre-synaptic neurons as we
did in Equation|1.10

1.2.3 Supervised training for RNN of LIF neurons

We now describe how to set up RNNs for supervised, input-output function approximation tasks.
For such tasks, oftentimes we are given a collection of time-dependent input signals {u(¢)}; and
desired output signals {y(t)}:, where u(t) € R™ and y(t) € R” for some m and k € N. In the
training phase, our goal is to configure a RNN such that it produces {y () }; as close as possible (up
to some regularization effects) whenever the input signal {u(¢) }, is given. One way to achieve this
with our RNN specified in Equation is to invest an additional output matrix W ¢ RV,
such that the following approximation

y(t) ~ Wr(t) (1.11)

holds under some metric for all ¢.

To achieve this goal, we need to optimize the parameters W', W, and W°" under some
metrics. The recent standard practice for this optimization task is to use back-propagation-through-
time algorithms [Rumelhart et al., [1986] with variants of surrogate gradients [Esser et al., 2016,
Bellec et al., 2018, Zenke and Ganguli, 2018} |Shrestha and Orchard, 2018|]. A recent review for
surrogate gradients training methods for spiking neural networks is given by |[Neftci et al.[[2019].

Although surrogate gradients training methods for spiking networks have achieved state-of-
the-art results with software simulations, when it comes to neuromorphic devices, they may not
be applicable for one device or another. In the next section, we provide a brief overview of the
applicability of learning algorithms of spiking neural networks for neuromorphic devices.

1.3 Learning algorithms for neuromorphic computation
We have already introduced neuromorphic hardware as well as spiking neural networks as a com-
putation paradigm deployable to neuromorphic hardware. In this section, we consider the strategies

for optimizing parameters of neural networks on neuromorphic hardware.

6

Since different types of neuromorphic hardware have different constraints, the choice of learn-
ing algorithms for on-chip neural networks heavily depends on the device one uses. By and large,
learning algorithms for neural networks on neuromorphic hardware are mainly advancing along
two lines of investigations [He et al., 2019]]: a deep learning [Goodfellow et al., |2016] approach
and a reservoir computing [Jaeger, 2001} [Maass et al., 2002]] approach.

1.3.1 Deep learning for neuromorphic hardware

As deep neural networks (DNNs) have achieved highly remarkable results on important machine
learning tasks such as image classification [He et al., 2016], machine translation [Bahdanau et al.,
2015]], and speech processing [Amodei et al., 2016], numerous studies are devoted to transferring
the success of conventional-computer-based deep learning algorithms to their neuromorphic hard-
ware counterparts. As observed by Liu et al. [2018], most research in this line of investigation
leverages a pre-training approach. That is, one first trains a DNN of artificial neurons or spiking
neurons on a conventional computer with standard techniques and then maps the trained parame-
ters to neuromorphic hardware. Since the parameter mapping needs relatively high precision, most
of the work in this approach uses digital hardware as the neuromorphic platform. For example, Jin
et al. [2010] and [Stromatias et al. [2015]] use SpiNNaker; [Esser et al., 2015, 2016]] use TrueNorth.
More recently, Schmitt et al.|[2017]] show that a similar approach works for BrainScaleS analog
neuromorphic system. The idea is to first roughly map the parameters estimated from DNN to
BrainScaleS hardware, and then iteratively fine-tune the parameters in a “hardware in the loop”
fashion. This is realized with the help of an interface between the conventional computer and the
BrainScaleS hardware.

Although the deep learning paradigm has been empirically proven to be highly successful for
many neuromorphic devices, there are a few reasons why it is not immediately suitable for our
Dyanp-se hardware. For one, the learned parameters of DNN cannot be mapped to Dynap-se
conveniently as the hardware only has limited parameter resolution. Additionally, the variability
of on-chip neurons may cripple the mapped DNN architecture since the performance of DNN relies
on highly precise and well-orchestrated parameters. What is more, a hardware-in-the-loop method
similar to|Schmitt et al. [2017]] cannot be realized easily on Dynap—s

1.3.2 Reservoir computing for neuromorphic hardware

The Reservoir Computing paradigm [Jaeger, 2001, Maass et al., 2002] offers a second route for
training recurrent spiking neural networks on neuromorphic systems. Concretely, the reservoir
computing paradigm is usually realized with the following steps [Jaeger et al.,|2007]. We introduce
these steps by using our RNN of Equation (1.10]as a concrete example.

1. Set up a random RNN. In our example of RNN of LIF neurons specified in Equation [I.10]
this amounts to randomly create W™ and W up to some hyperparameters which govern the
randomness of these matrices.

That being said, a recently released front-end interface of Dynap-se named CortexControl (https://ai-ctx.
gitlab.io/ctxctl/primer.html) brings some promises to this approach.

7

https://ai-ctx.gitlab.io/ctxctl/primer.html
https://ai-ctx.gitlab.io/ctxctl/primer.html

2. Drive the RNN with input signals to harvest reservoir states, i.e., temporal features produced
by recurrent neurons. In our RNN of LIF neuron example, this can be practically done by
choosing a sequence of discretized time {t;} and collect s(t;) for all ¢; by using Equation
The collected spike train {s(tx}) can be further smoothed into {r(x)} by using an
exponentially decay filter specified in Equation [I.10] Those {r(t;)} can be seen as high-
dimensional features of the input signal {u(t;)}.

3. Read out the desired outputs by linearly combining the reservoir states. In our RNN example,
we can estimate an output matrix W°"* which linearly combines reservoir states r(t;) into
the desired target signal y(¢;) for all ¢,. A commonly used approach to realize this is to
solve Equation[I.T1]via a ridge regression

W —Y®T (88 +ol) ', (1.12)

where « is a Tikhonov regularization coefficient, ® is a matrix whose columns are r(t), Y
is a matrix whose columns are those target y (¢), and I is an identity matrix [LukoSevicius),
2012].

Unlike the deep-learning based pre-training approach, the reservoir computing approach is
usually directly carried out using neuromorphic hardware. Compared to DNNs, the number of
parameters needed to be estimated for the reservoir computing approach is much smaller: The
recurrent weights Wi and W are fixed throughout the training and testing phase; only W
needs to be estimated. This greatly simplifies the optimization procedure. More importantly, since
Wit and W are random matrices, the inherent variability of on-chip neurons of analog hardware
can be seen as an advantage rather than a shortcoming for deploying the reservoir computing
pipeline. For this reason, reservoir computing has been perceived as a suitable paradigm for analog
neuromorphic computation.

1.4 Thesis overview

So far we have reviewed various notions related to neuromorphic computation. Building upon
these notions, this thesis is structured as follows. Chapter [2] gives an overview of our neuromor-
phic hardware, the Dynap-se board. We provide a general routine for performing experiments on
Dynap-se. Several issues related to the practical implementations of the routine are discussed.

Chapter |3| presents two parameter selection heuristics that we empirically found to be useful.
By selecting a few time constants for ordinary differential equations which characterize the dy-
namics of non-chip neurons as well as the synapse types of neurons, we nudge the on-chip neural
network toward having a slower timescale. We conducted a few synthetic experiments to probe
the dynamics of on-chip neural networks. These experiments show that the heuristically tuned
parameters yield slower neural dynamics when compared to untuned ones.

Chapter d]introduces the reservoir transfer paradigm. This scheme “mirrors” the dynamic prop-
erties of a well-performing artificial recurrent network (optimized on a conventional computer) to
spiking recurrent networks deployed on a Dynap-se neuromorphic microchip. We conducted ex-
periments using ECG heartbeat classification tasks to test the proposed method. For the ECG clas-

8

sification task, the empirical performance achieved by Dynap-se hardware favorably approaches
the performance achieved by software simulations.

We conclude this thesis with Chapter [5] Limitations of the current work are summarized and a
few lines of future investigations are outlined.

1.5 Used sources

This thesis partially uses results reported previously. Some parts of Chapter [2) and Chapter |3| are
from my independent study report [Liu, 2018] completed in Spring 2018. Chapter{]is an extended
version of the paper [He et al., | 2019] and the contributions of the authors are documented at the
beginning of the Chapter A

In numerical experiments of this thesis, we use DYNAPSETool software package. Developed
by Cattaneo| [2018], the software package is a collection of python classes and modules for the
purpose of processing spike events produced by Dynap-se.

1.6 Research reproducibility

The code for replicating numerical experiments reported in Chapter [3]and Chapter 4] together with
their respective used data collected from Dynap-se are available on the GitHu

3https://sanfans.github.io/DYNAPSETools
4https://github.com/liutianlinolZl/msc_thesis_code

9

https://sanfans.github.io/DYNAPSETools
https://github.com/liutianlin0121/msc_thesis_code

10

Chapter 2

Dynap-se Neuromorphic Microchips

In this chapter, we introduce the Dynap-se hardware [Moradi et al.l 2017], which is our work-
ing device used throughout this thesis. Dynap-se is the acronym for Dynamic Neuromorphic
Asynchronous Processor in a Scalable variant. The name indicates that the hardware is able to
perform computations in an asynchronous fashion and is scalable to large neural network architec-
tures. In this chapter, we first introduce the general feature of Dynap-se hardware. We then provide
a pipeline for conducting experiments using Dynap-se. Last, we describe how do we concretely
implement this pipeline.

2.1 Dynap-se board

The Dynap-se board that we are using contains four chips, each chip mainly contains four inter-
connected blocks, which are called cores. The schematic layout of these four cores (Core 0 to Core
3) is shown in Figure [2.1] Each core in a chip contains 256 neurons.

sy EEE S e e e e == iy

o

Figure 2.1: The multi-score structure of a Dynap-se microchip [Moradi et al., 2017].

11

Besides four main blocks, Core O to Core 3, there are other blocks such as BiasGen-1, BiasGen-
2, R1, R2, and R3 as shown in Figure These blocks are placed to govern the on-chip neural
dynamics, e.g., set up connectivity topologies, neuron parameters, and synapse parameters.

On a conventional computer, Dynap-se can be configured with the support of CAERE], which is
an open-source event-based processing framework written in C and C++. The cAER framework
provides a collection of modules for configuring and monitoring on-chip neural networks. It has a
convenient graphical user interfaceﬂ (GUI). Among others, the functionalities of the GUI of cAER
include (i) setting parameters for on-chip neurons, (ii) loading neural network architectures, (iii)
sending input spike-based stimuli, and (iv) recording the output spike events. The functionalities of
these GUI-based operations will be introduced in our summarized experiment pipeline in Section

2.1.1 On-chip neurons

The on-chip neurons implemented on Dynap-se are designed to emulate neurons of Adaptive Expo-
nential Integrate-and-Fire (AdEx) model [Brette and Gerstner, |2005], which is a generalization of
the leaky integrate-and-fire model. Properties of on-chip neurons can be tuned by a programmable
bias-generator, which contains 25 parameters such as injection current level, refractory period
length, time constants, and synaptic efficacy. A detailed list of these parameters can be found in
the Dynap-se user guide [IniLabs, 2017]]. The values of these parameters have low-bit resolutions.
As an example, the refractory period of a neuron can only be specified as a tuple of coarse and
fine values, where a coarse value can be chosen as an integer from O to 7, and a fine value can be
chosen as an integer from 0 to 255. In addition, these parameters can only be set globally for each
core but not for an individual neuron. Due to device mismatch, effective values of these parameters
may vary across different neurons. As a result, although all neurons within a core share the same
parameter values, every individual neuron exhibits different behavior [IniLabs, 2017]. In addition,
only neurons’ spike trains can be recorded by Dynap-se. Neurons’ state variables such as currents
and membrane potentials, however, cannot be recorded.

2.1.2 On-chip neural networks

So far we have introduced the dynamics of single neurons on Dynap-se. For computational tasks,
however, oftentimes we wish to connect individual neurons into a neural network on Dynap-se. To
define a topology (connectivity pattern) of an on-chip neural network, we need to use the NetParser
module of cAERﬂ to specify the connections. To understand the workflow of configuring an on-
chip neural network, we first need to explain the difference between “virtual” and “real” neurons
on Dynap-se.

To process a sequence of input spike train with a population of neurons, we first send this spike
train to its designated receivers in the neuron population. Conceptually, these input spikes can be

Unttps://inivation.com/support/software/caer/

Zhttps://github.com/inivation/caerctl-gui-javafx
Shttps://github.com/inivation/caer

12

https://inivation.com/support/software/caer/
https://github.com/inivation/caerctl-gui-javafx
https://github.com/inivation/caer

seen as the neuronal responses produced by some external neurons which will not participate in
recurrent connections once their produced spikes leave them. In Dynap-se, such source neurons
are referred to as “virtual neurons”. A virtual neuron cannot send spikes to another virtual neuron,
reflecting their “input” nature.

We can use such virtual neurons to send input spikes to “real neurons,” which are neurons that
can communicate with each other via synaptic connections. After the real neurons receive the input
spikes from virtual neurons, they will process the spikes and potentially propagate newly generated
spikes to other real neurons with which they connect, depending on the network topology. For
each synaptic connection, we can specify the connection efficacy and synapse type. The efficacy
of a synaptic connection needs to be defined in terms of content-addressable memory (CAM).
For each neuron, 64 CAMs in total are allowed for fan-in and fan-out connections. Each synapse
can be realized with four connection types: slow inhibitory, fast inhibitory, slow excitatory, and
fast excitatory. Excitatory synapses increase the membrane potential of postsynaptic neurons while
inhibitory synapses lower membrane potential of postsynaptic neurons. “Fast” synapses on Dynap-
se emulate synapses with AMPA receptors, while “slow” synapses on Dynap-se emulate synapses
with NMDA receptors. These synapses are called “fast” and “slow” because one key difference
between synapses with NMDA receptor and those with AMPA receptors is that the former enable
membrane potential to have slower onsets and have decays that last longer [Nestler et al., 2008,
Chapter 5] than the latter.

With the network topology, synapse efficacies, and synapse type chosen, we are able to con-
figure on-chip neural networks by uploading a .txt file in the NetParser module. The specific
format of this . t xt file will be introduced in Section 2.2

2.2 Conducting numerical experiments on Dynap-se

In this section, we take a technical overview of the general routine of using Dynap-se for compu-
tation. We then introduce our working solutions for a few key steps in the routine.

2.2.1 A general routine for performing numerical experiments

Step 1: Define the input spike train.

To start the experiment, one needs to determine the input patterns. The input pattern might
be continuous digital signals or discontinuous spike trains. If the input signals are con-
tinuous (e.g., sine waves), they have to be converted into spikes first via a spike-encoding
mechanism.

Step 2: Write spikes into a Dynap-se readable format

With the input spike data, we proceed to define the sender (source neuron) and receiver
(target neuron) of the input spikes. As we have introduced earlier, the senders of such input
spikes are virtual neurons. To send spikes from virtual neurons to real neurons, one needs
to specify 2 numbers. The first number is the sender-receiver correspondence, which is a
number encoded by three variables: (i) the virtual neuron ID, (ii) the virtual chip ID, and

13

(ii1) the destination core(s); the second number is the waiting time between the previous
spike and the current spike in the unit of 90 ISI-Bases, where one ISI-Base is 1/90 Mhz
= 11.11 nanoseconds. The first number “sender-receiver correspondence” deserves more
explanations. To encode these three variables, we first convert them individually into a
binary number, then concatenate into a long string, and finally convert the string of binary
numbers back into to a single decimal number. For a concrete example, suppose we want to
send a spike from the 21st neuron (virtual neuron ID = 20) on the first virtual chip (virtual
chip ID = 00) to all of the 4 cores of chip 0 that contain real neurons. The coding mechanism
works as follows. First consider the virtual neuron ID —itis 10100 because 10100 is the
binary conversion of 20; next consider the virtual chip ID — it is just 00; third consider the
receiver — they are cores 0, 1, 2, and 3, so they can be hot coded into 1111, where each
1 is an indication that one core has been selected. Putting these 3 variables together, we
have 10100001111, which will be treated as a binary number and will be converted into
a decimal number 1295. The number 1295 is the sender-receiver correspondence. Note that
the receivers are not individual neurons, but all neurons in one core or multiple cores.

The final output of this step is a list of pairs (Ey, 1), (E1,T1),- -, (En, Tn), where each
E;fori € {0,---,N} and N € N is a sender-receiver correspondence and each 7; for
i € {0,---,N}and N € N is the waiting time in the unit of 90 ISI-Bases. Such a list
should be written into a . t xt file, one pair per line, such that they can be fed into Dynap-se
using the FPGA-SpikeGen module in the GUI of cAER.

Step 3: Choose neural network parameters

Having the input spike trains written in a Dynap-se readable format, we are ready to send
them into Dynap-se. Before doing that, however, we need to specify the parameters of the on-
chip neural network. Such parameters include neuron parameters, synapse parameters, and
network topology. While neuron parameters and synapse parameters can be easily specified
by using the GUI of cAER, the configuration of network topology needs more explanation.
For synapse that connects two neurons, we need to provide four pieces of information in
the . txt file: (i) the pre-synaptic neuron address, (ii) the connection type, (iii) the CAM
slots, and (iv) the post-synaptic neuron address. An address for a pre-synaptic or post-
synaptic neuron has three elements: a chip ID, a core ID, and a neuron ID. For example,
U00-C01-NO0O02 is the address of the neuron 2 of core 1 of chip 0. Dynap-se contains four
connection-type, slow inhibitory, fast inhibitory, slow excitatory, and fast excitatory, which
are coded by numbers 0, 1, 2, and 3 respectively. The values of CAM slots can be chosen
from 1 to 64. As a concrete example, suppose we wish to connect a pre-synaptic neuron,
which is the neuron 2 of core 1 of chip 0, to a post-synaptic neuron, which is the neuron 4 of
core 3 of chip 2 with a slow inhibitory synapse taking 5 CAMs, we need to write

U00-C01-N0O02-> 0 - 5 —-U02-C03-N004
N~ ~~ - ~—~ ~~ S ~~ d
pre-synaptic neuron ID synapse CAM post-synaptic neuron ID

type slots

To configure a network, a list of these connectivities needs to be provided.

Step 4: Send input spikes and collect output spikes

14

Having the neural network model ready in the previous step, in this step, we send input
spikes and collect output spikes using the GUI of cAER software. We first read the . txt
file for input spikes and send it into Dynap-se. Next, we collect the output spike-events,
which are in the format of Address Event DATa (AEDAT)]

Step 5: Use the output spikes for neural network training

With the collected output spikes, we can visualize and analyze them on a digital computer.
A usual recipe is to first post-process the collected spikes into continuous-valued signals and
then perform pattern classification or regression tasks using the smoothed spike data. Our
collaborators in Zurich have developed a collection of spike-events processing programﬂ
which provides a convenient interface for analyzing spike data collected from Dynap-se.

2.2.2 Practical implementation of the routine

We have already summarized a general pipeline for conducting experiments using Dynap-se. Yet,
to realize this pipeline, we need to be more concrete at each step. Here we spell out a few working
solutions we used in our experiments.

In Step 1 of the experiment routine, sometimes we need to convert continuous signals to input
spike trains. Throughout this work, we use a simple method to do the signal-to-spike conversion:
If the increase/decrease of a signal relative to the signal value corresponding to the time of its
previous spike is above a certain threshold, a spike is placed. We chose this conversion method
mainly due to its simplicity. There exists more sophisticated methods (e.g., [Schrauwen and Van
Campenhout, [2003] and [Eliasmith and Anderson, 2004, Chapter 2]).

The neural network parameters introduced in Step 3 are also subjected to users’ choice. Since
neuron parameters and network topologies are the main components of learning and adaptation in
neural networks, it is not surprising that different choices of parameters will influence the optimal-
ity of experiment outcomes. Chapter 3| and 4| will be devoted to explaining our working solutions
to choose neuron parameters and network topologies.

Another subjective choice occurs in Step 5 of the experiment routine. To post-process the
collected spikes into continuous signals, throughout this work, we convolve the spikes with an
exponential decay kernel. That is, we add exponential tails to all spikes.

https://inivation.com/support/software/fileformat/#aedat-3
Shttps://github.com/sanfans/DYNAPSETools

15

https://inivation.com/support/software/fileformat/#aedat-3
https://github.com/sanfans/DYNAPSETools

16

Chapter 3

Slowing down Neuronal Dynamics by
Modiftying Properties of Individual Neurons

In the previous chapter, we have introduced our Dynap-se device. For practitioners, Dynap-se
can be seen as an input-output device characterized by tunable parameters and on-chip neural
network architectures, producing output spikes whenever input spikes are given. The produced
spike representations can then be used for tasks such as pattern recognition. However, configuring
Dynap-se to produce practically useful spike representations is challenging due to its material
properties such as low bit resolution of tuning parameters, unobservable state variables, device
mismatch, and timescale mismatch. Amongst these challenges, the timescale mismatch issue is
prominent: The dynamics of on-chip neurons tend to be too fast to maintain relatively long memory
spans. In this chapter, we provide a few working solutions to alleviate this problem. Concretely, we
offer a few heuristics for tuning neuron and synapse parameters, which nudge the neural networks
toward having slower dynamics. We examine the neuronal dynamics characterized by the tuned
parameters with three numerical experiments: A Pulse experiment for reservoir visualization, a
Chirp regression task, and a Ramp + Sine pattern classification task.

3.1 Heuristics of parameter selection

To configure time constants that govern the dynamics of on-chip neurons, we study the Differential
Pair Integrator (DPI) circuits of Dynap-se, which are circuits that simulate synapses of neurons
[Chicca et al., [2014]. In essence, the response of a DPI can be modeled by a first-order linear
differential equation [Chicca et al., 2014]

d m
7—%Iout + [out = I_[im
T
where I, is the output of the circuits, i.e., the postsynaptic current of a neuron, [j, is the input
current to the synapse, Iy is a time constant, and 7 = C' - UT is another time constant for C' being
the circuit capacitance, Ur being the thermal voltage [L1u et al., 2002, Chapter 2], x being the

subthreshold slope factor, and 7 being a tunable constant.

17

To slow down the dynamics of I, given [;;,, we aim to make (%Iout)2 as small as possible.

This can be done by adjusting I and Iy, as tunable parameters and treat other parameters as fixed
constants. With some linear algebraic operations, we see

d 2 -1]th 2
_Iou - - _[in - Iou
(40) - s
[kI], 2
= CUT(ILhIin - [out):|
_ . 9
- W(Ithlin_]outh—) : (3.1
| CUT

To minimize (%[om)2 for fast synapses, Equation n motivates us to set [y, and I, to be
the smallest possible values on Dynap-se. In cAER software of Dynap-se, this is done by as-
signing coarse and fine value of each parameter NDPDPIE_THR_F_P (which characterizes I, for
fast excitatory neurons), NDPDPII_THR_F_P (which characterizes Iy, for fast inhibitory neurons),
DPDPIE_TAU_F_P (which characterizes I for fast excitatory neurons) , and NDPDPII _TAU F P
(which characterizes [, for fast inhibitory neurons) to be 0 and 7.

Heuristic 1
Set the coarse and fine value of DPDPIE_THR_F_P to be 7 and 0, respectively.
Do the same setting for NDPDPII _THR F P, DPDPIE _TAU F_P, and
DPDPII_TAU_F_P.

We now introduce the second heuristic, which is about how to specify types of neuron synapses.
Intuitively, for the recurrent connections, we want the population of recurrent neurons to act as a
memory buffer, such that the characteristics of input signals will be slowly washed out over time.
Recall from Section [2.1.2] that, on Dynap-se, slow synapses emulate biological synapses which
enable membrane potential to have slow onsets and long decays. For this reason, we chose slow
synapses for reservoir neurons. Concretely, in the NetParser module of cAER, we choose the
connection-type IDs of synapses connecting pairs of recurrent neurons to be 0 or 2, which corre-
spond to slow inhibitory and slow excitatory synapses. We set fast synapses for input connections,
by choosing the connection-type IDs of synapses between input (virtual) neurons and recurrent
neurons to be 1 or 3 using NetParser module of cAER.

Heuristic 2
Use fast synapses for input connections.
Use slow synapses for recurrent (reservoir) connections.

With these parameters of Dynap-se tuned based on these two heuristics, we now proceed to test
the effects of the tuned parameters.

18

3.2 Numerical experiments

We aim to probe the dynamics of on-chip neurons which are characterized by different parameters
via numerical experiments. To evaluate the performance of our tuned parameters, we need to set
up the experiments such that the tuned parameters can be fairly compared to untuned ones.

3.2.1 Experiment setup: baseline reservoir and tuned reservoir

To examine whether the tuned parameters slow down the dynamics of neurons, we define a base-
line reservoir and a tuned reservoir, which share the same network topology but differ by neuron
and synapse parameters. This shared network topology for both baseline and tuned reservoirs is
described in more details below.

The shared reservoir topology The shared network topology we employed here is a topology
provided by Roberto Cattaneo, one of our main project collaborators in Zurich. This topology
loosely follows the one specified in [Maass et al., 2002, Appendix B]. More specifically, the
reservoir takes form as a population of 256 neurons, among which 80% are excitatory neurons
and 20% are inhibitory neurons, chosen randomly. By “excitatory neuron” or “inhibitory neu-
ron,” we mean that these neurons make excitatory or inhibitory synaptic connections with all their
respective post-synaptic neurons. We can index all neurons in the reservoir by their respective
coordinates in the set {(z,y)} = {0,---,15} x {0,---,15}, where x denotes the cartesian
product. The connectivity structure is defined as follows. For a fixed excitatory neuron with
coordinate (Z,¢) and for an arbitrary neuron with coordinate (x,y), the probability of existing a
synaptic connection between neuron with coordinate (Z,7) and neuron with coordinate (x,y) is

min <Cexi exp(—%), 1) , where Ce; = 0.3 and)\ = 2. Similarly, for a fixed inhibitary

neuron with coordinate (&,) and for an arbitrary neuron with coordinate (x,y), the connectivity

probability is min (Cinh exp(—%), 1), where Ciyp = A\inn = 2.

We provide some remarks for thism'sopology. Note that, for a fixed pre-synapse neuron, its con-
nection with a post-synapses neuron only depends on the coordinate of the post-synapses neuron,
and independent of the neuron type (excitatory or inhibitory) of the post-synapses neuron. This im-
plementation is consistent with Dale’s principle [Eccles et al., 1954]], which states that all synapses
originating from the same presynaptic neuron perform the same chemical action at all of its post-
synaptic neurons, regardless of the identity of the postsynaptic neuron. However, we notice that
this implementation is not the same as what has been proposed in [Maass et al., 2002, Appendix
B], where different connection probabilities are assigned to excitatory-to-excitatory, excitatory-to-
inhibitory, inhibitory-to-excitatory, and inhibitory-to-inhibitory neuronal connectivities.

Baseline reservoir The neurons in the default reservoir are characterized by the parameters listed
in Table in the Appendix, which can be configured by pressing the “set default bias” button
on the netParser interface of Dynap-se. As done in [Cattaneo, |2018], all neurons in the baseline
reservoir are set to be fast neurons. That is, all neurons make fast synaptic connections with their
respective post-synaptic neurons.

19

Tuned reservoir The neurons in the tuned reservoir are characterized by parameters modified
according to Heuristic 1 given in the previous section. The full list of tuned parameters can be
found in Table [A.2]in the Appendix. In addition, all neurons in this reservoir are set to be slow
neurons according to the recommendation of Heuristic 2 given in the previous section. That is, all
neurons make slow synaptic connections with their respective post-synaptic neurons.

3.2.2 The Pulse experiment

In this experiment, we aim to visualize and examine the reservoir responses driven by simple driv-
ing signals. To this end, we used a pulse of spikes as input to drive the reservoir. The experiment
lasts for 6.5 seconds. For the initial 0.5 seconds and last 5 seconds, there is no spike; from 0.5 sec-
onds to the 1.5 seconds, we sent a sequence of equally spaced spikes, where the distance between
two nearby spikes was fixed to be 0.001 seconds. After post-processing the spike trains produced
by reservoir neurons with an exponential-decay kernel, we display 100 randomly chosen neurons
from default reservoir and tuned reservoir in Figure [3.1]

Default Reservoir Tuned Reservoir
=2 o
Ty
-
£ 10-
IS)
o
e
(Vp)] [elcmn
0.5 1. 6.5 0.5 1.5 6.5
Time (sec) Time (sec)

Figure 3.1: Visualization of the reservoir responses driven by a Pulse input. The Pulse input
signals are visually illustrated with green vertical bars. For each of the default and tuned reser-
voir, we randomly choose 100 neurons and plot their neuronal responses (exponentially smoothed
spikes) against time. Left: responses of neurons from the default reservoir. Right: responses of
neurons from the tuned reservoir.

We see that there are only two types of neuron activities in the default reservoir, whose dy-
namics are visualized in the left panel of Figure 3.1l These two types of activities are (i) the
ON-neurons fired at the time 0.5 seconds and (ii) the OFF-neurons fired at the time 1.5 second. On
the other hand, the neuron activities produced by the tuned reservoir as shown in the right panel of
Figure [3.1] are much more versatile. The highly versatile neuron responses produced by the tuned
reservoir are usually favored for tasks such as regression and pattern classification. Intuitively,
diverse neuron responses are more linearly separable. The versatility of reservoir responses exhib-
ited by the tuned reservoir is also what one expects when conducting a similar Pul se experiment
on a digital computer (c.f. [Enel, 2014, Figure 3.5 C]).

20

3.2.3 The Pulse—-Chirp experiment

To further test the short-term memory of the default and tuned reservoirs, we conducteda Pulse-Chirp
experiment similar to the one used in [He et al.l 2019], whose presentation we follow here. The

goal of this regression task is to learn an input-output map, where the input is a sequence of pulses

with short widths separated by long periods of silence; the output is a chirp signal, whose oscil-
lation frequencies are adapting over time. Since the values of the target chirp signal depend on

the past values, the input-output map can only be successfully learned if the reservoir responses
preserve some information about the input history. Three repetitions of such pulses (green verti-

cal bars) and their corresponding 3 repetitions of target chirp signals (red curve) are illustrated in
Figure (3.2

3
= = Target
1-\ n ~ A -~ N =
/ A IN
N A U A L A N AN v N
[U N N Y L B N
O1v 1 v vy g \ : L B \
Vo AR soave o\ \
—1 - vl \vl \~| \.I \vl \\] \.I \.I \\ o
—2 T T T T T
0 2 4 6 8 10
Time (sec)

Figure 3.2: Visualization of three repetitions of input pulses and their target chirp signals. The
pipeline of the Pulse-Chirp experiment is to (i) drive a reservoir with the input spike train
(green vertical bars) and (ii) linearly map reservoir responses to the target chirp signal (red dashed
line). For the linear map to work, the reservoir responses need to attain a certain length of memory.

In our experiment, the lasting time for each pulse block is 0.5 seconds and the gap between two
pulse blocks is 2.85 second We repeated this input pattern for 30 times, resulting an input signal
for Dynapse that lasts for 30 x 3.35 = 100.5 seconds. After 30 repetitions of pulses were sent, the
responses of default and tuned reservoir neurons were collected. The collected spike trains were

"We use this peculiar “2.85 seconds” due to a technical issue we encountered for this experiment. As Dynap-se
disallows large gaps between two consecutive spikes, to introduce long silence time for this experiment, we employ a
work-a-round solution: during the silent period, we send some “pseudo spikes” to on-chip neurons that are not used
throughout the experiment. The list of “pseudo spikes” was converted from a linearly increasing continuous signal.
Although this continuous signal lasts for 3 seconds, the spike train converted from it happens to last 2.85 seconds due
to thresholding effect of the analog-to-spike conversion mechanism.

21

then smoothed with an exponential-decay kernel. Figure [3.3] shows the responses of default and
tuned reservoir when driven by the input spikes. Similar to what we have seen in Figure 3.1 we
observe that the reservoir responses from the tuned reservoir (right panel of Figure [3.3)) is much
more diverse than those from the default reservoir (left panel of Figure [3.3) when driven by the
sequence of pulses.

Default Reservoir Tuned Reservoir
3]
£ |l Il I Il Il Il
) 100 1
3 20 1
= 50
o
€
wn

3.3 7.00 10.50 0.00 3.3 7.00 10.50
Time (sec) Time (sec)

.O ()
(@») X
ja»)

Figure 3.3: Visualization of the reservoir responses of a sequence of short pulses (0.5 seconds)
gapped by long periods of silence (3 seconds). The sequence of pulses is visually illustrated with
green vertical bars. For each of the default and tuned reservoir, we randomly choose 100 neurons
and plot their neuronal responses (exponentially smoothed spikes) against time. Left: responses of
the default reservoir. Right: responses of the tuned reservoir.

So far, the experiment is similar to what we have done in the previously introduced Pulse
experiment. Different from the Pulse experiment, however, we carried out a regression for this
experiment, where the argument of the regression is the reservoir responses driven by these 30
repetitions of pulses and the target is 30 repetitions of chirp signals, whose oscillating frequencies
vary with respect to time. To do so, we split the harvested reservoir responses into a training dataset
and a testing dataset. The training dataset contains reservoir responses corresponding to the first 24
repetitions of input pulses and the test dataset contains the rest of the responses. A ridge regression
was performed to map the reservoir responses from the training dataset to its corresponding target.
We then submitted the training and testing reservoir responses for the same linear transformation,
which is specified by ridge regression coefficients estimated using the training data. A portion of
the training results and testing results (10 seconds each) for both reservoirs are shown in Figure

B4

22

Default Reservoir Tuned Reservoir

24l Il Il I Il Il
A / N \ [| A
1 b I\
0 \
9 Train MSE: 0.41 Train MSE: 0.18
24l Il Il I Il Il
Y A A 7 A

1 \
Ju) \
Test MSE: 0.48 Test MSE: 0.26
0 5 10 0 5 10

Time (sec) Time (sec)

Figure 3.4: Training and testing results of the Pulse—-Chirp regression task using the default
and the tuned reservoir. Figures in the first column are training (first row) and testing (second
row) results of a default reservoir; in a similar layout, figures in the second column are training
and testing results of a tuned reservoir. The input sequences of spikes are illustrated with Green
vertical bars; the target chirp signal is shown in red, and the predictions of the target chirp signal
(linearly read out from reservoir) are in blue. Numbers inset are the mean square errors (MSEs)
for training or testing datasets.

By comparing the left and right column of Figure [3.4] we see that the linear readout applied
to the default reservoir neuron responses failed to replicate the time-adapting oscillation behavior
of the target chirp signal (left panel), whereas the tuned reservoir solved the same task with much
lower mean square error (right panel). This indicates that the memory length possessed by the
tuned reservoir favorably outperforms the default one.

3.24 TheRamp + Sine experiment

In this experiment, we aim to compare the performances of default and tuned reservoirs under a
classification task. Our goal is to classify the temporal signal Ramp+Sine and Sine, which is
depicted in Figure [3.5] These two patterns are specifically designed such that the second half of
the Ramp + Sine signal is the same as the second half of Sine signal. To correctly distinguish

23

these patterns, the spiking neural network needs to maintain its memory when the temporal input
proceeds into the second half of the patterns. To start the experiment, we converted the continuous
ramp or sine signals into spike train as the input data for Dynap-se. The resulting input spike data
is shown in the second row of Figure [3.5] where the spikes in green are assumed to be generated
by an excitatory neuron and the spikes in red are assumed to be generated by an inhibitory neuron.

Ramp + Sine Sine

0 .

—1 A

0 1 2 0 1 2
Time (sec) Time (sec)

Figure 3.5: The Ramp + Sine and Sine signals and their respective converted input spike
trains. The green vertical bars indicate the spikes which are assumed to be generated by an excita-
tory input neuron and the red vertical bar indicate the spikes which are assumed to be generated by
an inhibitory input neuron. Left panel: the converted spike train from the Ramp + Sine signal.
Right panel: the converted spike train from the Sine.

In Figure [3.5] each signal lasts for 2 seconds, and so do their corresponding spike trains. When
performing the experiment, we sent 5 repetitions of each pattern into the Dynap-se, so that a single
experiment lasts for 2 x 5 x 2 = 20 seconds. For each pattern, we used the first two segments for
the washout purpose and we only collected the responding spikes starting from the 3rd repetition
of each pattern. We repeated the above process twice, once using the default reservoir and once
using the tuned reservoir, to harvest their respective reservoir responses. We have appended the
neural responses of the default and tuned reservoir driven by the Ramp + Sine pattern to the
Figure[A.T]in the Appendix.

With the collected spikes from the reservoir, we performed spike data post-processing with
an exponential-decay kernel as we have done before in the regression task. Next, we splitted the
harvested reservoir responses into a training dataset and a testing dataset. The training dataset
contains reservoir responses corresponding to two repetitions of each input pattern and the testing
dataset consists of the rest of the reservoir responses. With the training data, we performed a ridge
regression to extract the features of two patterns. The input argument for the ridge regression is
the training dataset of the smoothed spike trains. The regression target is a matrix whose columns
are one-hot encoded indication of the signal, where the column vector [1,0]" is the target for
Ramp+Sine pattern and [0, 1] is the target for Sine pattern. Ridge regression coefficients are
calculated based on the training dataset and its target. For prediction, we linearly transformed the
training and testing reservoir responses using the learned coefficients. In Figure[3.6) we display the
classification results for the signal.

24

Default Reservoir Tuned Reservoir

Train accuracy: 87.25% Train accuracy: 98.25%
1 e
/)
2 ° H

Test accuracy: 85.25%

0 2 4 6 8 0 2 4 6 8
Time (sec) Time (sec)

Test accuracy: 92.5%

Figure 3.6: Training and testing results of the Sine—Ramp classification task using the default
and the tuned reservoir. Figures in the first column are training (first row) and testing (second
row) results of a default reservoir; in a similar layout, figures in the second column are training
and testing results of a tuned reservoir. The thick red line and the thick green line at the y-axis
1 or O represent the regression targets for Ramp+Sine and Sine, respectively. The orange dots
represent the predicted score for Ramp+Sine, and the green dots represent the predicted score for
Sine. Numbers inset are predicted accuracies for training or testing datasets, where the accuracy
is defined as the ratio of the number of corrected predicted bins (each bin lasts for 0.01 seconds).

By comparing the left and right panel of Figure [3.6] we see that the input signals processed
by the tuned reservoir (right panel) achieved much better classification performances than those
processed by the untuned reservoir (left panel).

25

26

Chapter 4

Slowing down Neuronal Dynamics by
Modifying the Reservoir Topology

In Chapter [3| we introduced heuristic techniques which slow down neural dynamics by modifying
properties of individual neurons. Instead of working on the single neuron level, we can also directly
modify the global properties of a population of neurons. In this chapter, we introduce such a global
method named Reservoir Transfer. The method maps the desired dynamic properties of a RNN
whose dynamics is well-tuned on a digital computer to an on-chip spiking RNN.

A version of this chapter has been published as [He et al., 2019]. T. Liu contributed to the
paper as the second author by (i) creating a dataset for the purpose of training the on-chip reservoir
(to be discussed in Section 4.2 of this thesis) and (ii) using the on-chip reservoir to carry out an
ECG heartbeat abnormality experiment (to be discussed in Section 4.3). In the following section,
we present the Reservoir Transfer method sometimes using the wording of [He et al.,[2019].

4.1 Reservoir Transfer

The idea of the Reservoir Transfer method is based on the insight that the dynamics of a population
of neurons can be slower than those of individual neurons. For artificial recurrent neural networks
on a conventional computer, slow dynamics can be attained by properly choosing the global net-
work parameters, e.g., spectral radius of the recurrent connectivity matrix. However, setting these
parameters on Dynap-se based recurrent neural network is impractical due to its low numerical
precision. To address this issue, He et al. [2019] proposed to “transfer” the dynamic properties
of a well-performing RNN of artificial neurons (the “teacher network™) to on-chip RNNs of leaky
integrate-and-fire neurons (the “student network’). In this section, we introduce the teacher net-
work, the student network, and the transfer mechanism.

4.1.1 The teacher network

We first define a teacher network operating on a conventional computer, whose dynamics we wish
to “mirror” to a student network. The teacher network we use is an Echo State Network with leaky

27

integrator neurons [Jaeger, 2001]. When driven by a sequence of m-dimensional input signal u(¢)
at the time ¢, the evolution of the N-dimensional continuous-time state vector x(¢) of the network
is given by

x(t) = —A\.x(t) + tanh(W™u(t) + Wx(t)), 4.1

where), is the leaking rate, Wi € RY*™ and W € R™*¥ are input and recurrent weights. In
a reservoir computing paradigm, the input weight matrix W" and recurrent weight matrix W are
randomly generated according to some global parameters such as the scaling factor of W and the
spectral radius of W [Lukosevicius, |[2012].

4.1.2 The student network

We now present the student Spiking Neural Network (SNN), which is the RNN of integrate-and-
fire (LIF) neurons introduced in Equation [I.10fof Section Note that this student network is
slightly different from the one used in the original reservoir transfer paper [He et al., 2019] in that
the time constants are placed at different locations. Since the reservoir transfer method will not be
influenced by these changes, here we use the RNN with LIF neurons introduced in Equation [I.10]
for consistency.

Recall from Equation that, when driven by an m-dimensional input signal u(¢) at the time
t, the dynamics of a recurrent neural network of LIF neurons can be described by

T,V = —v(t) + Whu(t) + Wr(t) + I — s(t),
T,.F = —r(t) +s(t),

where v, s, and r are /V-dimensional vectors whose i-th entries are denoted by v;, s;, and r;, respec-
tively: v; is the membrane potential of the i-th neuron, s;(t) = Ztif 6(t —t7) is the neuron’s output

(4.2)

spike train with spike times tz} together with a Dirac delta function §(-), and r; is the exponentially
decaying synaptic currents triggered by s;; I is a vector whose entries are all [, a constant current
set near or at the rheobase (threshold to spiking) value [Nicola and Clopath, 2017]; the matrices
Wi € RV*™ and W e RV*N are input weights and recurrent weights of the student SNN. Note
that the teacher network and the student network have the same number of neurons.

4.1.3 Transfer dynamics of the teacher network to the student network

Since the reservoir dimension /N are usually much higher than the input signal dimension m, the
state vectors x(t) of the teacher ESN in Equation can be seen as high-dimensional temporal
features of the input signal u(t). To transfer the dynamic properties of the teacher ESN to the stu-
dent SNN, we inject these features x(¢) of the teacher ESN element-wisely into the corresponding
student SNN, replacing the recurrent inputs Wr(t) in Equation The resulting dynamics of the
SNN can be described by

ToVe = _Vz(t) + Winu(t) + X(t) + I() — 9S1<t>,

—1,(t) + s,(1). (4.3)

T, Ty

28

In Equation the dynamics of the student SNN are sustained with the help of x(t). Ideally,
however, we would like the same dynamics v, (¢) of the student SNN to be sustained without
manually injecting those x(¢). To this end, we would like to choose a W, such that when both
networks are driven by the same input signal u(¢), the dynamics of two networks are similar in the
sense that Wrx(t) ~ x(t) for all t. To estimate such W, however, it is practically infeasible to
take all kinds of input signal u(t) and all continuous-valued time ¢ into account. For this reason,
we resorted to a more modest goal: we fixed u(¢) to be a white noise signal and use it to drive the
teacher and student networks. We then compute W by letting

W = arg min Z W, (t) — x(t)]]3, (4.4)

AY% e

where ¢, are some discrete time samples and r, and x are those reservoir responses when driven
by the fixed white noise signal u;. The W in Equation can be solved via a linear regression.
The solved W can then be used as a reservoir in the student SNN.

We note that the reservoir transfer method is not limited to the choice of neuron model used
in the student spiking neural network. In Equation 4.2] we used RNN of LIF neurons for the
convenience of presentation. Other types of neuron models can be straightforwardly used in the
reservoir transfer paradigm, too. Indeed, the neurons equipped on Dynap-se are based on the AdEx
model [Brette and Gerstner, 2005], which is a generalization of the leaky integrate-and-fire model.

4.2 Training on-chip reservoir

We employed the reservoir transfer method to train a reservoir of 768 neurons (3 cores) on Dynap-
se. The training procedure is outlined as follows. We first created a leaky ESN of equal size in
the Brian2 simulator |[Goodman and Brettel, [2009]] as a teacher reservoir. We sent a white noise
input signal u(t) to the teacher ESN to harvest its reservoir responses. These responses are then
converted to spike trains and are sent to the student network on Dynap-se, whose parameters have
already been tuned according to the heuristic techniques discussed in Chapter |3|in advance. After
the output spike trains from the hardware neurons are recorded, we smoothed both the input and
output spike trains by an exponential decay kernel to get x(¢) and r(t), respectively. Instead of us-
ing the standard linear regression to solve Equation4.4] we employed a ternarized linear regression
[Zhu et al.,|2017] to compute the weight matrix Wtemary of ternary precision. That is, the values of
the matrix Wtemaw are either -1, 0, or 1, corresponding to inhibitory synapses, no connection, and
excitatory synapses. Ternarized linear regression was used here because our Dynap-se hardware
does not support full-precision recurrent connectivities. The learned ternary connectivity matrix
was then written into a . t xt file and loaded into Dynap-se as the trained reservoir. When writ-
ing the learned topology into Dynap-se readable format, we assumed that all synapses are slow
synapses according to the recommendation of Heuristic Technique 2 introduced in Chapter
One advantage of reservoir transfer method for Dynap-se hardware is that the method does
not require exact values of the network state variables such as membrane potentials and currents,
which are unobservable and varying across individual neurons on Dynap-se. The neurons do not

29

have to share the same parameter value as long as their collective response to the input current x(¢)
contains enough information to linearly decode x(t). Moreover, learning is needed only once using
a white noise signal, afterward, the connection weights can stay fixed. Hence no online adaptation
on hardware is needed.

We would like to briefly remark the similarities and differences of the reservoir transfer method
and the pre-trained DNN method introduced in section Both methods map artificial neural
networks to their counterparts on neuromorphic devices. However, the objectives of reservoir
transfer method and the pre-trained DNN are quite different. The pre-trained DNN approach first
learns parameters based on a particular task (e.g., image classification) and maps the learned pa-
rameters to neuromorphic hardware such that the on-chip neural networks can solve the same task.
The reservoir method, however, is not optimized with respect to a particular task. Instead, the
learning here aims to map characteristics of slow dynamics of the teacher ESN to the student SNN.
On can say that the learned connection weights resulted from the reservoir transfer method are not
task-customized but timescale-customized.

4.3 ECG monitoring experiment

3 Normal Beat 3 PVC Beat
2 2
> >
E £
5 1 S 1
2 b=
£ 0 £ 0
< <
-1 ~1
0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00
Time(s) Time(s)

Figure 4.1: Two patterns of heartbeats in an ECG signal. Left panel: a normal heartbeat. Right
panel: a PVC heart beat.

To verify that the transfer learning method yields a functional physical spiking reservoir, we
conducted ECG signal classification experiments using the learned reservoir on Dynap-se. The
experiment aims to detect Premature Ventricular Contractions (PVCs), which are abnormal heart-
beats initiated by the heart ventricles. Figure 4.1|shows a normal heartbeat (left panel) and a PVC

30

heartbeat (right panel). More concretely, we formulated the PVC detection task as a supervised
temporal classification problem which demands a binary output signal y(n) for each heartbeat
indexed by n:

1 if the n-th heartbeat is a PVC,
y(n) = { (4.5)

0 otherwise.

We used the MIT-BIH ECG arrhythmia database |Goldberger et al.| [2000] in this experiment.
The database provides 48 half-hour excerpts of two-channel ambulatory ECG recording files, ob-
tained from 47 different patients. The recordings were digitized with a sampling frequency of 360
Hz and acquired with 11-bit resolution over a 10mV range. Each record was annotated by two
or more cardiologists independently, both in timing information and beat classification. In this
work, we used recordings from file #106, #119, #200, #201, #203, #223, and #233. We aim to
train a classifier for each subject, such that the trained classifier can distinguish the normal and
abnormal heartbeats of the corresponding subject. To this end, we used the annotation file of each
subject to train and evaluate the classifier. More concretely, we used an interval of 10 minutes of
the recording signal from each subject for training and the next 5 minutes for testing. We carried
out numerical experiments using the following routine.

1. ECG pre-processing: we removed the baseline drift from an ECG signal by applying a high-
pass Butterworth filter and then normalized the signal into the numerical range [0,1].

2. Signal-to-spike conversion: we placed a spike at a time index if the increase/decrease of the
ECG signal relative to its value at the previous spike time surpassed a threshold of numerical
value 0.1.

3. Reservoir response harvesting: we sent ECG-converted spike trains into Dynap-se to harvest
the reservoir responses, which were in the form of spike trains.

4. Spike-to-signal conversion: on a digital computer, we smoothed the spike trains collected
from the physical reservoir to continuous-valued time-series by an exponential decay kernel
with a decay time constant, which is a hyperparameter for each individual subject.

5. Classifier training: the training of the classifier amounted to solving a linear regression
problem, where the input for linear regression was the smoothed reservoir responses and the
target output was a {0, 1}-valued binary signal indicating the correct labels of heartbeats. To
derive a stable linear regression solution, we used a ridge regression in practice. Dividing the
reservoir responses and target signal into five segments, we used a five-fold cross-validation
scheme to optimize the learning parameters, which include a regularization coefficient for
ridge regression and a binarization threshold to round the predicted labels to O and 1.

6. Test result evaluation: with a testing ECG time-series, we repeated the above procedure to
procure its smoothed reservoir responses and then readout the predicted labels with learned
weights. We used the following familiar metrics to evaluate the binary classification per-
formance: accuracy, sensitivity, precision, and F1-score. Concretely, letting TP denote the
number of true positive predictions (abnormal heartbeats correctly identified as abnormal),
FP denote the number of false positive (normal heartbeats incorrectly identified as abnormal

31

heartbeats), TP denote the number of true negative predictions (normal heartbeats correctly
identified as normal), and FN denote the number of false negative predictions (abnormal
heartbeats incorrectly identified as normal), the metrics accuracy, sensitivity, precision, and
F1-score are defined as follows: Accuracy = (TP + TN)/(TP + TN + FP + FN), Sensitivity =
TP/(TP + FN), Precision = TP/(TP + FP), F1-score = 2TP/(2TP + FP + FN).

A comparison of classification accuracy on testing data between the low-precision spiking
reservoir and the digitally simulated, high-precision reservoir baseline is provided in Table §.1]
The high-precision reservoir baseline is a standard ESN whose parameters set as leakage rate =
0.99, spectral radius= 0.9, and regression parameter = 1e-6.

Table 4.1: PVC detection results on testing data

Performance Metrics
subject number classifier Accuracy Sensitivity Precision F1

Standard ESN BT5% 9722% 97.22% 9722 %

subject #106 Dynap-se reservoir 91.30% 88.89 % 76.19 % 82.05 %
subiect #119 Standard ESN 99.70 % 100 % 99.10 % 99.55 %
J Dynap-se reservoir 97.87 % 100 % 94.07 % 96.94 %
subiect #200 Standard ESN 99.07% 9824 % 99.40 % 98.82 %
J Dynap-se reservoir 9580 % 9353 % 9578 % 94.64 %
subiect #201 Standard ESN 99.24 % 100 % 97.18 % 98.57 %
J Dynap-se reservoir 9774 % 95771 % 95771 % 95.71 %
subiect #203 Standard ESN 98.14 % 100 % 9032 % 94.92 %
) Dynap-se reservoir 89.28 % 7938 % 70.64 % 74.76 %
subiect #223 Standard ESN 99.07% 99.05% 98.11 % 98.58 %
) Dynap-se reservoir 90.53 % 76.15% 84.69 % 80.19%
subiect #233 Standard ESN 99.78 % 100 % 99.21 % 99.60 %
J Dynap-se reservoir 9746 % 93.01% 9779 % 9534 %

From Table we see that the computational performance of the on-chip neural networks
favorably approximate that of ESNs on conventional computers.

32

Chapter 5

Conclusion

In this thesis, we reported our attempts to realize slow reservoir dynamics on a type of analog neu-
romorphic hardware named Dynap-se. We empirically demonstrated that by harnessing slow dy-
namics, spiking neural networks deployed on analog neuromorphic hardware can gain non-trivial
performance boosts for real-time signal processing tasks. We now summarize the contributions of
this thesis.

In Chapter 2| we outlined a general pipeline for conducting experiments with Dynap-se board.
This pipeline can be used as a primer for practitioners who wish to conduct numerical experiments
on Dynap-se. In Chapter [3] we proposed two heuristics methods for slowing down the dynamics of
on-chip neural networks. Since these two techniques operate locally at the neuron level, they can
be conveniently applied to Dynap-se for different tasks. In Chapter 4| we introduced the reservoir
transfer paradigm, which “mirrors” well-tuned dynamics of an artificial neural network to an on-
chip spiking neural network. For the reservoir transfer paradigm, the main contribution of the
thesis was on the experiment side, for which we have tested the effectiveness of the transferred
reservoir using ECG datasets collected from 7 subjects.

This thesis has a few limitations. An important one is that we need more thorough investi-
gations on the separate roles played by the parameter tuning heuristics and the reservoir transfer
method. As pointed out in Chapter 4, when training the on-chip reservoir (Section and when
conducting the ECG experiments (Section [4.3)), we used heuristically tuned parameters. That is,
the reservoir transfer pipeline operated with the help of the tuned parameters. By doing so, two
important issues remain unclear: (i) Will reservoir transfer work using the untuned set of param-
eters? (i) How well can the tuned (yet untrained) reservoir perform under the ECG experiments?
To address these questions, more controlled experiments are needed. A second limitation of this
thesis is that the experiments we have reported in Chapter [3] and Chapter {] are based on on-chip
reservoir responses driven by single trials of input spike trains. Recall that, for example, when
conducting the Pul se—Chirp experiment in Subsection[3.2.2] the training and testing data were
two separate segments of reservoir responses driven by a single trial of input spike train. This
approach, however, fails to take trial-to-trial variability of on-chip neural networks. Due to the
stochasticity of analog circuits, regression weights estimated from reservoir responses driven by
one trial of input spikes may perform well upon in-trial reservoir responses yet fail to generalize
well to out-of-trial reservoir responses.

33

This thesis calls for a deeper investigation of the effects of timescales in spiking neural net-
works. In the future, we expect more algorithms that bring slow dynamics to spiking neural net-
works on analog neuromorphic hardware. Concretely, for future work, it will be worthwhile to
formally validate/falsify the two heuristic techniques proposed in Chapter [3| by delving deep into
the non-linear dynamics of DPI circuits. A second avenue for future research is to extend the ex-
isting reservoir transfer method. As pointed out in He et al.| [2019], instead of using a randomly
created ESN for reservoir transfer, we plan to explore the effects of transferring trained recurrent
neural networks on neuromorphic hardware.

34

35

Appendix A

Parameters Values

A.1 Default Parameters

Parameter Names Coarse Values Fine Values
IF_AHTAU_N 7 35
IF_AHTHR_N 7 1
IF_AHW_P 7 1
IF_BUF_P 3 80
IF_CASC_N 7 1
Neuron Parameters IF_DC_P 7
IF_NMDA_N 7 0
IF_RFR_N 4 60
IF_-TAU1_N 7 130
IF_TAU2_N 0 100
IF_.THR_N 7 130
NPDPIE_TAU_F_P 4 36
NPDPIE_TAU_S_P 5 38
NPDPIE_-THR_F_P 2 200
NPDPIE_-THR_S_P 2 200
NPDPII_TAU_F_P 5 41
NPDPII_TAU_S_P 5 41
Synapse Parameters NPDPILTHR F.P 0 150
NPDPII_.THR_S_P 7 150
PS_WEIGHT_EXC_F N 0 30
PS_WEIGHT_EXC.SN 0 100
PS_WEIGHT_INHFN O 100
PS_WEIGHT_INH.S N 0 114
PULSE_PWLK_P 2 112
R2R_P 4 85

Table A.1: The default parameters of Dynap-se. These parameters can be configured by pressing
“set default spiking biases” button on the GUI o#®ynapse.

A.2 Tuned Parameters

Parameter Names Coarse Values Fine Values
IF_ AHTAU_N 7 35
IF_ AHTHR_N 7 1
IF_ AHW_P 7 1
IF_BUF_P 3 80
IF_CASC_N 7 1
Neuron Parameters IF_DC_P 7
IF_ZNMDA_N 7 0
IF_RFR_N 4 60
IF_-TAUI1_N 7 130
IF_TAU2_N 0 100
IF_THR_N 7 130
NPDPIE_TAU_F_P 7 0
NPDPIE_TAU_S_P 5 38
NPDPIE_THR_F_P 7 0
NPDPIE_THR_S_P 2 200
NPDPII_TAU_F_P 7 0
NPDPII_TAU_S_P 5 41
Synapse Parameters NPDPILTHR F-P 7 0
NPDPII_THR_S_P 7 150
PS_WEIGHT_EXC_F.N 0 30
PS_WEIGHT_EXC_.S.N 0 100
PS_WEIGHT_INH_F.N 0 100
PS_WEIGHT_INH_.S.N 0 114
PULSE_PWLK_P 2 112
R2R_P 4 85

Table A.2: The tuned parameters of Dynap-se. Compared to the default parameters in Table
the modified ones are marked in red.

37

A.3 Reservoir responses in Ramp + Sine experiment

Default Reservoir Tuned Reservoir

3

L

Smoothed spikes

mi) wl'v"‘ \/
ﬁ” IR

| “\ ‘ \ .\ ‘ | ‘ \‘ \
VNV INUNTIN T INSRUTTNNY R MNJ\L el

Time (sec) Time (sec)

Figure A.1: Visualization of the reservoir responses when driven by input signal from Ramp +
Sine experiment. For each of the default and tuned reservoir, we randomly choose 100 neurons
and plot their neuronal responses (exponentially smoothed spikes) against time. Left: responses of
the default reservoir. Right: responses of the tuned reservoir.

38

Bibliography

D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B. Catan-
zaro, Q; Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates, G. Diamos,
K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong, A. Hannun,
T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li, X. Li,
D. Ma, S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V. Rao,
S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang, L. Tang, C. Wang, J. Wang,
K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama,
B. Yuan, J. Zhan, and Z. Zhu. Deep speech 2 : End-to-end speech recognition in english and
mandarin. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of the 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 173-182, New York, New York, USA, June 2016. PMLR.

A. G. Andreou and K. A. Boahen. Translinear circuits in subthreshold MOS. Analog Integrated
Circuits and Signal Processing, 9(2):141-166, March 1996.

J. Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. Communications of the ACM, 21(8):613-641, August 1978.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In 3rd International Conference on Learning Representations (ICLR 2015), May
2015.

C. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory
and learning-to-learn in networks of spiking neurons. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 787-797. Curran Associates, Inc., 2018.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. Bussat, R. Alvarez-
Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen. Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699-716, May 2014.

K. Birmingham, V. Gradinaru, P. Anikeeva, W. M. Grill, V. Pikov, B. McLaughlin, P. J. Pasricha,
D. Weber, K. Ludwig, and K. Famm. Bioelectronic medicines: A research roadmap. Nature
Reviews Drug Discovery, 13(June):399-400, 2014.

S. Braun and S. Liu. Parameter uncertainty for end-to-end speech recognition. In ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5636-5640, May 2019.

39

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective descrip-
tion of neuronal activity. Journal of Neurophysiology, 94(5):3637-3642, 2005.

D. Briiderle, J. Bill, B. Kaplan, J. Kremkow, K. Meier, E. Miiller, and J. Schemmel. Simulator-like
exploration of cortical network architectures with a mixed-signal VLSI system. In Proceedings
of 2010 IEEE International Symposium on Circuits and Systems, pages 2784-8787, May 2010.

R. Cattaneo. ECG signals classification using Neuromorphic hardware. PhD thesis, Politechnico
Di Torino, 2018.

R. K. Cavin, P. Lugli, and V. V. Zhirnov. Science and engineering beyond Moore’s law. Proceed-
ings of the IEEE, 100(Special Centennial Issue):1720-1749, May 2012.

E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri. Neuromorphic electronic circuits for build-
ing autonomous cognitive systems. Proceedings of the IEEE, 102(9):1367-1388, September
2014.

M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. Choday, G. Dimou, P. Joshi, N. Imam,
S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic many-
core processor with on-chip learning. /IEEE Micro, 38(01):82-99, January 2018.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Cir-
cuits, 9(5):256-268, October 1974.

J. C. Eccles, P. Fatt, and K. Koketsu. Cholinergic and inhibitory synapses in a pathway from motor-
axon collaterals to motoneurones. The Journal of physiology, 126(3):524-562, December 1954.

C. Eliasmith and C. H. Anderson. Neural engineering: Computation, representation, and Dynam-
ics in Neurobiological Systems. MIT press, 2004.

P. Enel. Dynamic representation in the prefrontal cortex: insights from comparing reservoir com-
puting and primate neurophysiology. PhD thesis, Icahn School of Medicine at Mount Sinai,
2014.

S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha. Backpropagation
for energy-efficient neuromorphic computing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 1117-1125. Curran Associates, Inc., 2015.

S. K. Esser, P. M. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J.
Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D.
Flickner, and D. S Modha. Convolutional networks for fast, energy-efficient neuromorphic
computing. Proceedings of the National Academy of Sciences, 113(41):11441-11446, 2016.

S. Furber. Large-scale neuromorphic computing systems. Journal of Neural Engineering, 13(5):
051001, August 2016.

C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S. Liu. Real-time speech recognition
for iot purpose using a delta recurrent neural network accelerator. In 2019 IEEFE International
Symposium on Circuits and Systems (ISCAS), pages 1-5, May 2019.

40

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics: From Single Neurons
to Networks and Models of Cognition. Cambridge University Press, New York, NY, USA, 2014.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and Physionet:
Components of a new research resource for complex physiologic signals. Circulation, 101(23),
June 2000.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.orq.

D. Goodman and R. Brette. The Brian simulator. Frontiers in Neuroscience, 3:26, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, June 2016.

X. He, T. Liu, F. Hadaeghi, and H. Jaeger. Reservoir transfer on analog neuromorphic
hardware. The 9th International IEEE EMBS Conference on Neural Engineering, March
2019. URL http://minds.jacobs—university.de/uploads/papers/3158_
Heetall9.pdfl

D. Huh and T. J. Sejnowski. Gradient descent for spiking neural networks. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 1433—1443. Curran Associates, Inc., 2018.

G. Indiveri and S. Liu. Memory and information processing in neuromorphic systems. Proceedings
of the IEEE, 103(8):1379-1397, August 2015.

IniLabs. Dynap-se user guide, 2017. URL https://docs.google.com/document/
d/e/2PACX-1vQV36QRWsQl4ROfvRo/mbHLS5_ _Z2Q4Q1Qw64AkfdhuPELtIXYglkf
72sD3-GZkYPKgrlkOiizCg—-Jjt_kD/pub?embedded=true.

N. Izeboudjen, C. Larbes, and A. Farah. A new classification approach for neural networks hard-
ware: from standards chips to embedded systems on chip. Artificial Intelligence Review, 41(4):
491-534, Apr 2014.

H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert. Optimization and applications of echo
state networks with leaky-integrator neurons. Neural Networks, 20(3):335 — 352, 2007. Echo
State Networks and Liquid State Machines.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks
with an erratum note. Technical Report of German National Research Center for Information
Technology, 148(34):13, 2001.

X. Jin, M. Lujn, M. M. Khan, L. A. Plana, A. D. Rast, S. R. Welbourne, and S. B. Furber. Algorithm
for mapping multilayer BP networks onto the SpiNNaker neuromorphic hardware. In 2010 Ninth
International Symposium on Parallel and Distributed Computing, pages 9—-16, July 2010. doi:
10.1109/ISPDC.2010.10.

M. Kaku. Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by
the Year 2100. Anchor, 2012.

L. B. Kish. End of Moore’s law: thermal (noise) death of integration in micro and nano electronics.

41

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://minds.jacobs-university.de/uploads/papers/3158_Heetal19.pdf
http://minds.jacobs-university.de/uploads/papers/3158_Heetal19.pdf
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true

Physics Letters A, 305:144—149, December 2002.

R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj. Pose estimation and map formation
with spiking neural networks: towards neuromorphic SLAM. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2159-2166, October 2018.

L. Lapicque. Recherches quantitatives sur I’excitation €lectrique des nerfs traitée comme une
polarisation. Journal de Physiologie et Pathologie General, 9:620-635, 1907.

C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumirker, S. Hoppner, W. Maass,
S. B. Furber, R. Legenstein, and C. G. Mayr. Memory-efficient deep learning on a SpiNNaker 2
prototype. Frontiers in Neuroscience, 12:840, 2018.

S. Liu, T. Delbruck, J. Kramer, G. Indiveri, and R. Douglas. Analog VLSI: Circuits and Principles.
MIT Press, Cambridge, MA, USA, 2002.

Tianlin Liu. Toward reservoir computing on neuromorphic microchips, 2018.
URL http://www.neuram3.eu/internal/paper—repository/
toward-reservoir-computing-on-neuromorphic-microchips.

M. LukoSevicius. A Practical Guide to Applying Echo State Networks, pages 659—686. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

W. Maass, T. Natschlidger, and H. Markram. Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Computation, 14(11):2531—
2560, 2002.

C. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629-1636, 1990.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson,
N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir,
M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345(6197):668—673,
2014.

S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri. A scalable multicore architecture with heteroge-
neous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE
Transactions on Biomedical Circuits and Systems, pages 1-17, 2017.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith,
R. Manohar, and K. Boahen. Braindrop: A mixed-signal neuromorphic architecture with a
dynamical systems-based programming model. Proceedings of the IEEE, 107(1):144-164, Jan-
uary 2019.

E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in spiking neural networks,
2019. URL https://arxiv.org/abs/1901.09948.

E. J. Nestler, S. E. Hyman, and R. C. Malenka. Molecular Neuropharmacology: A Foundation
for Clinical Neuroscience, Second Edition. McGraw Hill professional. McGraw-Hill Education,
2008.

W. Nicola and C. Clopath. Supervised learning in spiking neural networks with FORCE training.
Nature Communications, 8(1):2208, 2017.

42

http://www.neuram3.eu/internal/paper-repository/toward-reservoir-computing-on-neuromorphic-microchips
http://www.neuram3.eu/internal/paper-repository/toward-reservoir-computing-on-neuromorphic-microchips
https://arxiv.org/abs/1901.09948

Q. Ning, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri. A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128K synapses. Frontiers in Neuroscience, 9:141, 2015.

E. Painkras, L. A. Plana, J. Garside, S. Temple, S. Davidson, J. Pepper, D. Clark, C. Patterson,
and S. Furber. SpiNNaker: A multi-core system-on-chip for massively-parallel neural net sim-
ulation. In Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, pages 1-4,
September 2012.

T. Pfeil. Exploring the potential of brain-inspired computing. PhD thesis, University of Heidelberg,
2015.

N. Qiao and G. Indiveri. Analog circuits for mixed-signal neuromorphic computing architectures
in 28 nm FD-SOI technology. In 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S), pages 1-4, October 2017.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri. A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128K synapses. Frontiers in Neuroscience, 9:141, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533-536, 1986.

J. Schemmel, D. Bruderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity within net-
works of highly accelerated I&F neurons. In 2007 IEEE International Symposium on Circuits
and Systems, pages 3367-3370, May 2007.

J. Schemmel, A. Griibl, S. Hartmann, A. Kononov, C. Mayr, K. Meier, S. Millner, J. Partzsch,
S. Schiefer, S. Scholze, R. Schiiffny, and M. Schwartz. Live demonstration: A scaled-down
version of the brainScaleS wafer-scale neuromorphic system. In 2012 IEEE International Sym-
posium on Circuits and Systems, pages 702-702, May 2012.

S. Schmitt, J. Kldhn, G. Bellec, A. Griibl, M. Giittler, A. Hartel, S. Hartmann, D. Husmann,
K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke, A. Kononov, C. Mauch, E. Miiller,
P. Miiller, J. Partzsch, M. A. Petrovici, S. Schiefer, S. Scholze, V. Thanasoulis, B. Vogginger,
R. Legenstein, W. Maass, C. Mayr, R. Schiiffny, J. Schemmel, and K. Meier. Neuromorphic
hardware in the loop: Training a deep spiking network on the brainScaleS wafer-scale system.
In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2227-2234, May
2017.

B. Schrauwen and J. Van Campenhout. BSA, a fast and accurate spike train encoding scheme. In
Proceedings of the International Joint Conference on Neural Networks, 2003., volume 4, pages
2825-2830, July 2003.

S. Shaikh, R. So, T. Sibindi, C. Libedinsky, and A. Basu. Real-time closed loop neural decoding
on a neuromorphic chip. The 9th International IEEE EMBS Conference on Neural Engineering,
March 2019.

S. B. Shrestha and G. Orchard. SLAYER: Spike layer error reassignment in time. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in

43

Neural Information Processing Systems 31, pages 1412—1421. Curran Associates, Inc., 2018.

E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S. Furber. Scalable energy-efficient,
low-latency implementations of trained spiking deep belief networks on SpiNNaker. In 2075
International Joint Conference on Neural Networks (IJCNN), pages 1-8, July 2015.

J. von Neumann. First draft of a report on the EDVAC, 1945. URL https://ieeexplore.
ieee.org/document /238389l

M. Waldrop. The chips are down for Moore’s law. Nature News,
530:144, February 2016. URL https://www.nature.com/news/
the-chips—-are-down-for-moore-s—-law—-1.19338.

A. Zbrzeski, Y. Bornat, B. Hillen, R. Siu, J. Abbas, R. Jung, and S. Renaud. Bio-inspired controller

on an fpga applied to closed-loop diaphragmatic stimulation. Frontiers in Neuroscience, 10:275,
2016.

F. Zenke and S. Ganguli. Superspike: Supervised learning in multilayer spiking neural networks.
Neural Computation, 30(6):1514—-1541, 2018.

C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. In 5th International
Conference on Learning Representations, (ICLR 2017), Toulon, France, April 2017.

44

https://ieeexplore.ieee.org/document/238389
https://ieeexplore.ieee.org/document/238389
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

	1 Introduction
	1.1 Neuromorphic computing
	1.2 Recurrent network of spiking neurons
	1.2.1 LIF neurons
	1.2.2 Recurrent network of LIF neurons
	1.2.3 Supervised training for RNN of LIF neurons

	1.3 Learning algorithms for neuromorphic computation
	1.3.1 Deep learning for neuromorphic hardware
	1.3.2 Reservoir computing for neuromorphic hardware

	1.4 Thesis overview
	1.5 Used sources
	1.6 Research reproducibility

	2 Dynap-se Neuromorphic Microchips
	2.1 Dynap-se board
	2.1.1 On-chip neurons
	2.1.2 On-chip neural networks

	2.2 Conducting numerical experiments on Dynap-se
	2.2.1 A general routine for performing numerical experiments
	2.2.2 Practical implementation of the routine

	3 Slowing down Neuronal Dynamics by Modifying Properties of Individual Neurons
	3.1 Heuristics of parameter selection
	3.2 Numerical experiments
	3.2.1 Experiment setup: baseline reservoir and tuned reservoir
	3.2.2 The Pulse experiment
	3.2.3 The Pulse-Chirp experiment
	3.2.4 The Ramp + Sine experiment

	4 Slowing down Neuronal Dynamics by Modifying the Reservoir Topology
	4.1 Reservoir Transfer
	4.1.1 The teacher network
	4.1.2 The student network
	4.1.3 Transfer dynamics of the teacher network to the student network

	4.2 Training on-chip reservoir
	4.3 ECG monitoring experiment

	5 Conclusion
	A Parameters Values
	A.1 Default Parameters
	A.2 Tuned Parameters
	A.3 Reservoir responses in Ramp + Sine experiment

