001     873632
005     20240313094942.0
020 _ _ |a 978-3-030-30486-7 (print)
020 _ _ |a 978-3-030-30487-4 (electronic)
024 7 _ |a 10.1007/978-3-030-30487-4_54
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a WOS:000546494000054
|2 WOS
037 _ _ |a FZJ-2020-00875
100 1 _ |a Tetko, Igor V.
|0 0000-0002-6855-0012
|b 0
|e Editor
111 2 _ |a ICANN 2019: Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation pp
|c Munich
|d 2019-09-17 - 2019-09-19
|w Germany
245 _ _ |a Training Delays in Spiking Neural Networks
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1593502935_1667
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Spiking Neural Networks (SNNs) are a promising computational paradigm, both to understand biological information processing and for low-power, embedded chips. Although SNNs are known to encode information in the precise timing of spikes, conventional artificial learning algorithms do not take this into account directly. In this work, we implement the spike timing by training the synaptic delays in a single layer SNN. We use two different approaches: a classical gradient descent and a direct algebraic method that is based on a complex-valued encoding of the spikes. Both algorithms are equally able to correctly solve simple detection tasks. Our work provides new optimization methods for the data analysis of highly time-dependent data and training methods for neuromorphic chips.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Smartstart - SMARTSTART Training Program in Computational Neuroscience (90251)
|0 G:(EU-Grant)90251
|c 90251
|x 1
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Kůrková, Věra
|0 0000-0002-8181-2128
|b 1
|e Editor
700 1 _ |a Karpov, Pavel
|0 0000-0003-4786-9806
|b 2
|e Editor
700 1 _ |a Theis, Fabian
|0 0000-0002-2419-1943
|b 3
|e Editor
700 1 _ |a State, Laura
|0 0000-0001-8084-5297
|b 4
700 1 _ |a Vilimelis Aceituno, Pau
|0 0000-0002-1218-4009
|b 5
|e Corresponding author
773 _ _ |a 10.1007/978-3-030-30487-4_54
909 C O |o oai:juser.fz-juelich.de:873632
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 0000-0001-8084-5297
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21