000873640 001__ 873640
000873640 005__ 20230328130150.0
000873640 0247_ $$2doi$$a10.1016/j.bios.2020.112053
000873640 0247_ $$2ISSN$$a0956-5663
000873640 0247_ $$2ISSN$$a1873-4235
000873640 0247_ $$2pmid$$a32056959
000873640 0247_ $$2WOS$$aWOS:000519667000006
000873640 037__ $$aFZJ-2020-00883
000873640 082__ $$a610
000873640 1001_ $$0P:(DE-Juel1)167225$$aKutovyi, Yurii$$b0$$ufzj
000873640 245__ $$aAmyloid-beta peptide detection via aptamer-functionalized nanowire sensors exploiting single-trap phenomena
000873640 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000873640 3367_ $$2DRIVER$$aarticle
000873640 3367_ $$2DataCite$$aOutput Types/Journal article
000873640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678961442_24058
000873640 3367_ $$2BibTeX$$aARTICLE
000873640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873640 3367_ $$00$$2EndNote$$aJournal Article
000873640 520__ $$aNew highly sensitive direct methods for the early detection of peptides involved in Alzheimer's disease (AD) are required in order to prolong effective and healthy memory and thinking capabilities and also to stop the factors resulting in AD. In this contribution, we report the successful demonstration of a label-free approach for the detection of amyloid-beta (Aβ) peptides by highly selective aptamers immobilized onto the SiO2 surface of the fabricated sensors. A modified single-stranded deoxyribonucleic acid (ssDNA) aptamer was specially designed and synthesized to detect the target amyloid beta-40 sequence (Aβ-40). Electrolyte–insulator–semiconductor (EIS) structures as well as silicon (Si) nanowire (NW) field-effect transistors (FETs) covered with a thin SiO2 dielectric layer have been successfully functionalized with Aβ-40-specific aptamers and used to detect ultra-low concentrations of the target peptide. The binding of amyloid-beta peptides of different concentrations to the surface of the sensors varied in the range from 0.1 pg/ml to 10 μg/ml resulting in a change of the surface potential was registered by the fabricated devices. Moreover, we show that the single-trap phenomena observed in the novel Si two-layer (TL) NW FET structures with advanced characteristic parameters can be effectively used to increase the sensitivity of nanoscale sensors. The obtained experimental data demonstrate a highly sensitive and reliable detection of ultra-low concentrations of the Aβ-40 peptides. This opens up prospects for the development of real-time electrical biosensors for studying and understanding different stages of AD by utilizing Si TL NW FET structures fabricated on the basis of cost-efficient CMOS-compatible technology.
000873640 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000873640 588__ $$aDataset connected to CrossRef
000873640 7001_ $$0P:(DE-Juel1)164250$$aHlukhova, Hanna$$b1
000873640 7001_ $$0P:(DE-Juel1)171802$$aBoichuk, Nazarii$$b2$$ufzj
000873640 7001_ $$0P:(DE-HGF)0$$aMenger, Marcus$$b3
000873640 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4$$ufzj
000873640 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b5$$eCorresponding author$$ufzj
000873640 773__ $$0PERI:(DE-600)1496379-6$$a10.1016/j.bios.2020.112053$$gVol. 154, p. 112053 -$$p112053 -1-8$$tBiosensors and bioelectronics$$v154$$x0956-5663$$y2020
000873640 8564_ $$uhttps://juser.fz-juelich.de/record/873640/files/Kutovyi-Biosensors%20and%20Bioelectronics.pdf$$yRestricted
000873640 909CO $$ooai:juser.fz-juelich.de:873640$$pVDB
000873640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167225$$aForschungszentrum Jülich$$b0$$kFZJ
000873640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171802$$aForschungszentrum Jülich$$b2$$kFZJ
000873640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000873640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b5$$kFZJ
000873640 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000873640 9132_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000873640 9141_ $$y2020
000873640 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873640 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873640 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOSENS BIOELECTRON : 2017
000873640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873640 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873640 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873640 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873640 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000873640 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873640 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOSENS BIOELECTRON : 2017
000873640 920__ $$lyes
000873640 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000873640 980__ $$ajournal
000873640 980__ $$aVDB
000873640 980__ $$aI:(DE-Juel1)IBI-3-20200312
000873640 980__ $$aUNRESTRICTED
000873640 981__ $$aI:(DE-Juel1)IBI-3-20200312