000873655 001__ 873655
000873655 005__ 20210130004502.0
000873655 0247_ $$2doi$$a10.1021/acschemneuro.9b00558
000873655 0247_ $$2Handle$$a2128/24627
000873655 0247_ $$2altmetric$$aaltmetric:74090514
000873655 0247_ $$2pmid$$apmid:31939658
000873655 0247_ $$2WOS$$aWOS:000515195800005
000873655 037__ $$aFZJ-2020-00886
000873655 082__ $$a540
000873655 1001_ $$0P:(DE-Juel1)176262$$aFatafta, Hebah$$b0
000873655 245__ $$aRole of Oxidized Gly25, Gly29, and Gly33 Residues on the Interactions of Aβ 1–42 with Lipid Membranes
000873655 260__ $$aWashington, DC$$bACS Publ.$$c2020
000873655 3367_ $$2DRIVER$$aarticle
000873655 3367_ $$2DataCite$$aOutput Types/Journal article
000873655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585727496_27240
000873655 3367_ $$2BibTeX$$aARTICLE
000873655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873655 3367_ $$00$$2EndNote$$aJournal Article
000873655 520__ $$aOxidative stress is known to play an important role in the pathogenesis of Alzheimer's disease. Moreover, it is becoming increasingly evident that the plasma membrane of neurons plays a role in modulating the aggregation and toxicity of Alzheimer's amyloid-β peptide (Aβ). In this study, the combined and interdependent effects of oxidation and membrane interactions on the 42 residues long Aβ isoform are investigated using molecular simulations. Hamiltonian replica exchange molecular dynamics simulations are utilized to elucidate the impact of selected oxidized glycine residues of Aβ42 on the interactions of the peptide with a model membrane comprised of 70% POPC, 25% cholesterol, and 5% of the ganglioside GM1. The main findings are that, independent of the oxidation state, Aβ prefers binding to GM1 over POPC, which is further enhanced by the oxidation of Gly29 and Gly33 and reduced the formation of β-sheet. Our results suggest that the differences observed in Aβ42 conformations and its interaction with a lipid bilayer upon oxidation originate from the position of the oxidized Gly residue with respect to the hydrophobic sequence of Aβ42 involving the Gly29-XXX-Gly33-XXX-Gly37 motif and from specific interactions between the peptide and the terminal sugar groups of GM1.
000873655 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000873655 588__ $$aDataset connected to CrossRef
000873655 7001_ $$0P:(DE-Juel1)140589$$aPoojari, Chetan$$b1
000873655 7001_ $$00000-0003-2415-8403$$aSayyed-Ahmad, Abdallah$$b2
000873655 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b3
000873655 7001_ $$0P:(DE-Juel1)161571$$aOwen, Michael$$b4$$eCorresponding author
000873655 773__ $$0PERI:(DE-600)2528493-9$$a10.1021/acschemneuro.9b00558$$gp. acschemneuro.9b00558$$n4$$p535-548$$tACS chemical neuroscience$$v11$$x1948-7193$$y2020
000873655 8564_ $$uhttps://juser.fz-juelich.de/record/873655/files/Autorenmanuskript%20Role%20of%20Oxidized%20Gly25%2C%20Gly29%2C%20and%20Gly33%20Residues%20on%20the%20Interactions%20of%20A%CE%B21%E2%80%9342%20with%20Lipid%20Membranes.pdf$$yPublished on 2020-01-15. Available in OpenAccess from 2021-01-15.$$zStatID:(DE-HGF)0510
000873655 8564_ $$uhttps://juser.fz-juelich.de/record/873655/files/acschemneuro.9b00558.pdf$$yRestricted
000873655 8564_ $$uhttps://juser.fz-juelich.de/record/873655/files/Autorenmanuskript%20Role%20of%20Oxidized%20Gly25%2C%20Gly29%2C%20and%20Gly33%20Residues%20on%20the%20Interactions%20of%20A%CE%B21%E2%80%9342%20with%20Lipid%20Membranes.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-01-15. Available in OpenAccess from 2021-01-15.$$zStatID:(DE-HGF)0510
000873655 8564_ $$uhttps://juser.fz-juelich.de/record/873655/files/acschemneuro.9b00558.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873655 909CO $$ooai:juser.fz-juelich.de:873655$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176262$$aForschungszentrum Jülich$$b0$$kFZJ
000873655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b3$$kFZJ
000873655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161571$$aForschungszentrum Jülich$$b4$$kFZJ
000873655 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000873655 9141_ $$y2020
000873655 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873655 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873655 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000873655 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CHEM NEUROSCI : 2017
000873655 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873655 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873655 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873655 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873655 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873655 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873655 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873655 920__ $$lyes
000873655 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000873655 9801_ $$aFullTexts
000873655 980__ $$ajournal
000873655 980__ $$aVDB
000873655 980__ $$aUNRESTRICTED
000873655 980__ $$aI:(DE-Juel1)ICS-6-20110106
000873655 981__ $$aI:(DE-Juel1)IBI-7-20200312