000873663 001__ 873663
000873663 005__ 20220930130229.0
000873663 0247_ $$2doi$$a10.3390/s20030760
000873663 0247_ $$2Handle$$a2128/24283
000873663 0247_ $$2pmid$$apmid:32019130
000873663 0247_ $$2WOS$$aWOS:000517786200184
000873663 037__ $$aFZJ-2020-00893
000873663 041__ $$aEnglish
000873663 082__ $$a620
000873663 1001_ $$0P:(DE-Juel1)128734$$aSydoruk, Viktor$$b0$$eCorresponding author$$ufzj
000873663 245__ $$aPrecise Volumetric Measurements of Any Shaped Objects with a Novel Acoustic Volumeter
000873663 260__ $$aBasel$$bMDPI$$c2020
000873663 3367_ $$2DRIVER$$aarticle
000873663 3367_ $$2DataCite$$aOutput Types/Journal article
000873663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581003947_22019
000873663 3367_ $$2BibTeX$$aARTICLE
000873663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873663 3367_ $$00$$2EndNote$$aJournal Article
000873663 520__ $$aWe introduce a novel technique to measure volumes of any shaped objects based on acoustic components. The focus is on small objects with rough surfaces, such as plant seeds. The method allows measurement of object volumes more than 1000 times smaller than the volume of the sensor chamber with both high precision and high accuracy. The method is fast, noninvasive, and easy to produce and use. The measurement principle is supported by theory, describing the behavior of the measured data for objects of known volumes in a range of 1 to 800 µL. In addition to single-frequency, we present frequency-dependent measurements that provide supplementary information about pores on the surface of a measured object, such as the total volume of pores and, in the case of cylindrical pores, their average radius-to-length ratio. We demonstrate the usefulness of the method for seed phenotyping by measuring the volume of irregularly shaped seeds and showing the ability to “look” under the husk and inside pores, which allows us to assess the true density of seeds.
000873663 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000873663 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000873663 588__ $$aDataset connected to CrossRef
000873663 7001_ $$0P:(DE-Juel1)129346$$aKochs, Johannes$$b1$$ufzj
000873663 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b2$$ufzj
000873663 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b3$$ufzj
000873663 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b4$$ufzj
000873663 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s20030760$$gVol. 20, no. 3, p. 760 -$$n3$$p760$$tSensors$$v20$$x1424-8220$$y2020
000873663 8564_ $$uhttps://juser.fz-juelich.de/record/873663/files/Invoice_sensors-686945%281%29.pdf
000873663 8564_ $$uhttps://juser.fz-juelich.de/record/873663/files/Invoice_sensors-686945%281%29.pdf?subformat=pdfa$$xpdfa
000873663 8564_ $$uhttps://juser.fz-juelich.de/record/873663/files/sensors-20-00760.pdf$$yOpenAccess
000873663 8564_ $$uhttps://juser.fz-juelich.de/record/873663/files/sensors-20-00760.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873663 8767_ $$8sensors-686945$$92020-01-28$$d2020-02-03$$eAPC$$jZahlung erfolgt
000873663 909CO $$ooai:juser.fz-juelich.de:873663$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000873663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128734$$aForschungszentrum Jülich$$b0$$kFZJ
000873663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129346$$aForschungszentrum Jülich$$b1$$kFZJ
000873663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b2$$kFZJ
000873663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b3$$kFZJ
000873663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b4$$kFZJ
000873663 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129336$$aExternal Institute$$b4$$kExtern
000873663 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000873663 9141_ $$y2020
000873663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873663 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873663 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873663 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2017
000873663 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873663 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873663 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873663 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873663 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873663 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873663 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873663 920__ $$lyes
000873663 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000873663 980__ $$ajournal
000873663 980__ $$aVDB
000873663 980__ $$aUNRESTRICTED
000873663 980__ $$aI:(DE-Juel1)IBG-2-20101118
000873663 980__ $$aAPC
000873663 9801_ $$aAPC
000873663 9801_ $$aFullTexts