000873680 001__ 873680
000873680 005__ 20250129092504.0
000873680 0247_ $$2doi$$a10.1088/2058-9565/ab5e07
000873680 0247_ $$2Handle$$a2128/24290
000873680 0247_ $$2altmetric$$aaltmetric:74014451
000873680 0247_ $$2WOS$$aWOS:000574828800002
000873680 037__ $$aFZJ-2020-00909
000873680 082__ $$a530
000873680 1001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b0$$eCorresponding author
000873680 245__ $$aControl electronics for semiconductor spin qubits
000873680 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2019
000873680 3367_ $$2DRIVER$$aarticle
000873680 3367_ $$2DataCite$$aOutput Types/Journal article
000873680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581079488_24519
000873680 3367_ $$2BibTeX$$aARTICLE
000873680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873680 3367_ $$00$$2EndNote$$aJournal Article
000873680 520__ $$aFuture universal quantum computers solving problems of practical relevance are expected to require at least 10^6 qubits, which is a massive scale-up from the present numbers of less than 50 qubits operated together. Out of the different types of qubits, solid state qubits are considered to be viable candidates for this scale-up, but interfacing to and controlling such a large number of qubits is a complex challenge that has not been solved yet. One possibility to address this challenge is to use qubit control circuits located close to the qubits at cryogenic temperatures. In this work we evaluate the feasibility of this idea, taking as a reference the physical requirements of a two-electron spin qubit and the specifications of a standard 65 nm complementary metal-oxide-semiconductor process. Using principles and flows from electrical systems engineering we provide realistic estimates of the footprint and of the power consumption of a complete control-circuit architecture. Our results show that with further research it is possible to provide scalable electrical control in the vicinity of the qubit, with our concept.
000873680 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000873680 588__ $$aDataset connected to CrossRef
000873680 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b1
000873680 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b2
000873680 7001_ $$0P:(DE-Juel1)142562$$aWaasen, Stefan van$$b3
000873680 7001_ $$0P:(DE-HGF)0$$aHeinen, Stefan$$b4
000873680 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/ab5e07$$gVol. 5, no. 1, p. 015004 -$$n1$$p015004 -$$tQuantum science and technology$$v5$$x2058-9565$$y2020
000873680 8564_ $$uhttps://juser.fz-juelich.de/record/873680/files/Geck_2020_Quantum_Sci._Technol._5_015004.pdf$$yOpenAccess
000873680 8564_ $$uhttps://juser.fz-juelich.de/record/873680/files/LGeck_Control_electronics_for_semiconductor_spin_qubits.pdf$$yOpenAccess
000873680 8564_ $$uhttps://juser.fz-juelich.de/record/873680/files/LGeck_Control_electronics_for_semiconductor_spin_qubits.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873680 8564_ $$uhttps://juser.fz-juelich.de/record/873680/files/Geck_2020_Quantum_Sci._Technol._5_015004.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873680 8767_ $$88134579$$92019-12-03$$d2020-02-11$$eHybrid-OA$$jZahlung erfolgt$$zAbwicklung nicht über ZB
000873680 909CO $$ooai:juser.fz-juelich.de:873680$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000873680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b0$$kFZJ
000873680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b1$$kFZJ
000873680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b2$$kFZJ
000873680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ
000873680 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873680 9141_ $$y2019
000873680 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000873680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873680 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000873680 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873680 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000873680 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000873680 9801_ $$aFullTexts
000873680 980__ $$ajournal
000873680 980__ $$aVDB
000873680 980__ $$aUNRESTRICTED
000873680 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000873680 980__ $$aI:(DE-Juel1)PGI-11-20170113
000873680 980__ $$aAPC
000873680 981__ $$aI:(DE-Juel1)PGI-4-20110106