000873691 001__ 873691
000873691 005__ 20250129092443.0
000873691 0247_ $$2doi$$a10.1109/ISCAS.2019.8702442
000873691 037__ $$aFZJ-2020-00914
000873691 1001_ $$0P:(DE-Juel1)167475$$aDegenhardt, C.$$b0$$ufzj
000873691 1112_ $$a2019 IEEE International Symposium on Circuits and Systems (ISCAS)$$cSapporo$$d2019-05-26 - 2019-05-29$$wJapan
000873691 245__ $$aSystems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers
000873691 260__ $$bIEEE$$c2019
000873691 300__ $$a1 - 5
000873691 3367_ $$2ORCID$$aCONFERENCE_PAPER
000873691 3367_ $$033$$2EndNote$$aConference Paper
000873691 3367_ $$2BibTeX$$aINPROCEEDINGS
000873691 3367_ $$2DRIVER$$aconferenceObject
000873691 3367_ $$2DataCite$$aOutput Types/Conference Paper
000873691 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1580989877_22020
000873691 520__ $$aWe report on our systems engineering activities concerning cryogenic CMOS electronics as building blocks for scalable quantum computers. Following the V-model of engineering, the topic is approached both in top-down and in bottom-up fashion. We show the main results from the top-down study using system modeling and simulations. In a bottom-up fashion, a prototype chip was designed and implemented in a commercial 65nm CMOS process. The chip contains a DC digital-to-analog-converter (DC-DAC) and a Pulse-DAC as building blocks for an integrated quantum bit control. The DC-DAC is able to tune a qubit into its operating point. The Pulse-DAC generates pulse patterns with 250MHz sampling frequency to perform gate operations on a qubit.
000873691 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000873691 588__ $$aDataset connected to CrossRef Conference
000873691 7001_ $$0P:(DE-Juel1)174165$$aArtanov, A.$$b1$$ufzj
000873691 7001_ $$0P:(DE-Juel1)169123$$aGeck, L.$$b2$$ufzj
000873691 7001_ $$0P:(DE-Juel1)159350$$aGrewing, C.$$b3$$ufzj
000873691 7001_ $$0P:(DE-Juel1)156521$$aKruth, A.$$b4$$ufzj
000873691 7001_ $$0P:(DE-Juel1)168167$$aNielinger, D.$$b5$$ufzj
000873691 7001_ $$0P:(DE-Juel1)171680$$aVliex, P.$$b6$$ufzj
000873691 7001_ $$0P:(DE-Juel1)145837$$aZambanini, A.$$b7$$ufzj
000873691 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, S.$$b8$$ufzj
000873691 773__ $$a10.1109/ISCAS.2019.8702442
000873691 8564_ $$uhttps://juser.fz-juelich.de/record/873691/files/08702442.pdf$$yRestricted
000873691 8564_ $$uhttps://juser.fz-juelich.de/record/873691/files/08702442.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873691 909CO $$ooai:juser.fz-juelich.de:873691$$pVDB
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b0$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174165$$aForschungszentrum Jülich$$b1$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b2$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b3$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b4$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b5$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b6$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b7$$kFZJ
000873691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b8$$kFZJ
000873691 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873691 9141_ $$y2019
000873691 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000873691 980__ $$acontrib
000873691 980__ $$aVDB
000873691 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000873691 980__ $$aUNRESTRICTED
000873691 981__ $$aI:(DE-Juel1)PGI-4-20110106