001     873702
005     20240313103127.0
024 7 _ |a arXiv:1911.09625
|2 arXiv
024 7 _ |a 2128/24272
|2 Handle
024 7 _ |a altmetric:70973601
|2 altmetric
037 _ _ |a FZJ-2020-00925
100 1 _ |a Gutknecht, A. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Sampling distribution for single-regression Granger causality estimators
260 _ _ |c 2019
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1580998417_22021
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a Aaron Gutknecht was employed at the FZJ through the SMARTSTART Training program, project number DB001423.
520 _ _ |a We show for the first time that, under the null hypothesis of vanishing Granger causality, the single-regression Granger-Geweke estimator converges to a generalised $\chi^2$ distribution, which may be well approximated by a $\Gamma$ distribution. We show that this holds too for Geweke's spectral causality averaged over a given frequency band, and derive explicit expressions for the generalised $\chi^2$ and $\Gamma$-approximation parameters in both cases. We present an asymptotically valid Neyman-Pearson test based on the single-regression estimators, and discuss in detail how it may be usefully employed in realistic scenarios where autoregressive model order is unknown or infinite. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality, state-space Granger causality, and the Granger causality $F$-test statistic. Finally, we discuss approaches to approximating the distribution of the single-regression estimator under the alternative hypothesis.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Smartstart - SMARTSTART Training Program in Computational Neuroscience (90251)
|0 G:(EU-Grant)90251
|c 90251
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Barnett, L.
|0 P:(DE-HGF)0
|b 1
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/873702/files/1911.09625.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/873702/files/1911.09625.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873702
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21