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Abstract

We show for the first time that, under the null hypothesis of vanishing Granger causality, the single-
regression Granger-Geweke estimator converges to a generalised χ2 distribution, which may be well
approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged
over a given frequency band, and derive explicit expressions for the generalised χ2 and Γ-approximation
parameters in both cases. We present an asymptotically valid Neyman-Pearson test based on the single-
regression estimators, and discuss in detail how it may be usefully employed in realistic scenarios where
autoregressive model order is unknown or infinite. We outline how our analysis may be extended to
the conditional case, point-frequency spectral Granger causality, state-space Granger causality, and the
Granger causality F -test statistic. Finally, we discuss approaches to approximating the distribution of
the single-regression estimator under the alternative hypothesis.

1 Introduction

Since its inception in the 1960s, Wiener-Granger causality (GC) has found many applications in a range of
disciplines, from econometrics, neuroscience, climatology, ecology, and beyond. In the early 1980s Geweke
introduced the standard vector-autoregressive (VAR) formalism, and the Granger-Geweke population log-
likelihood-ratio (LR) statistic (Geweke, 1982, 1984). As well as furnishing a likelihood-ratio test for statis-
tical significance, the statistic has been shown to have an intuitive information-theoretic interpretation as a
quantitative measure of “information transfer” between stochastic processes (Barnett et al., 2009; Barnett
and Bossomaier, 2013). In finite sample, the LR estimator requires separate estimates for the full and
reduced VAR models, and as such admits the classical large-sample theory, and asymptotic χ2 distribution
(Neyman and Pearson, 1933; Wilks, 1938; Wald, 1943). However, it has become increasingly clear that the
“dual-regression” LR estimator is problematic: specifically, model order selection involves a bias-variance
trade-off which may skew statistical inference, impact efficiency, and produce spurious results, including
negative GC values (Ding et al., 2006; Chen et al., 2006; Stokes and Purdon, 2017).

An alternative single-regression (SR) estimator which obviates the problem has been developed in
various forms over the past decade (Dhamala et al., 2008a,b; Barnett and Seth, 2014, 2015; Solo, 2016);
but, since the large-sample theory no longer obtains, its sampling distribution has remained unknown until
now. In addition to the improved efficiency and reduced bias of the SR estimator (Barnett and Seth, 2014,
2015), knowledge of its sampling distribution under the null hypothesis of vanishing causality would allow
to construct novel and potentially superior hypothesis tests, especially in the frequency domain where little
is known about the sampling distribution of Geweke’s spectral GC statistic1 (Geweke, 1982, 1984). Closing
this gap is thus the central object of the present study.

∗Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Juelich, Germany.
†MEG Unit, Brain Imaging Center, Goethe University, Frankfurt am Main, Germany.
‡Sackler Centre for Consciousness Science and Dept. of Informatics, University of Sussex, Falmer, Brighton, UK
§Corresponding author: l.c.barnett@sussex.ac.uk

1This applies even in the unconditional case where the Geweke spectral statistic (Geweke, 1982) requires only a single
estimate of the full model.

1

a
rX

iv
:1

9
1

1
.0

9
6

2
5

v
1

  
[m

a
th

.S
T

] 
 2

1
 N

o
v

 2
0

1
9



We begin in Section 2 with an overview of the theoretical and technical prerequisites of maximum-
likelihood (ML) estimation, large-sample theory, the generalised χ2 distribution, VAR modelling, and
Granger causality estimation. Since SR estimators (both time-domain and frequency-band-limited) are
continuous functions of the ML estimator for the full VAR model, the problem of determining their
asymptotic distributions can be approached via (a second-order version of) the well-known Delta Method
(Lehmann and Romano, 2005), in conjunction with a state-space spectral factorisation technique (Wilson,
1972; Hannan and Deistler, 2012) which allows explicit derivation of reduced-model parameters in terms
of the full-model parameters (Barnett and Seth, 2015; Solo, 2016). In Section 3 we show in this way
that the asymptotic distributions are generalised χ2, and derive explicit expressions for the distributional
parameters in terms of the parameters of the underlying VAR model.

Unlike under the classical theory, the asymptotic null distributions of the SR estimators have a de-
pendence on the true null parameters, which presents a challenge for statistical inference. These issues
are addressed in Section 4, in which we present an asymptotically valid Neyman-Pearson test that ac-
commodates this dependence. We discuss the properties of this test in terms of type I and type II error
probabilities. In Section 5 we complete our analysis by addressing the issues of model order selection and
potentially infinite model orders. We elaborate on how our analysis might be extended in the future to
the conditional case (Geweke, 1984), point-frequency spectral GC (Geweke, 1982, 1984), state-space GC
(Barnett and Seth, 2015; Solo, 2016), and the GC F -statistic (Hamilton, 1994, Chap. 11). Finally, we
discuss approaches to approximating the distribution of the SR estimator under the alternative hypothesis.

2 Preliminaries

Notation: Throughout, superscript “T” denotes matrix transpose and superscript “∗” conjugate transpose,
while superscript “R” refers to a reduced model (Section 2.4); | · · · | denotes the determinant of a a square
matrix and trace[· · ·] its trace; ‖· · ·‖ denotes a consistent vector/matrix norm; P[· · ·] denotes probability,
E[· · ·] expectation and var[· · ·] variance; p−→ denotes convergence in probability and

d−→ convergence in
distribution; “log” denotes natural logarithm. Unless stated otherwise, all vectors are taken to be column
vectors.

2.1 Maximum likelihood estimation and the large-sample theory

Suppose given a parametrised set of models on a state space S = R
n, with multivariate parameter θ =

[θ1, . . . , θr]
T in an r-dimensional parameter space Θ ⊆ R

r. A data sample of size N for the model is then a
sequence u = {u1,u2, . . . ,uN} ∈ SN ; in general, the uk will not be independent, and we denote the joint
distribution of data samples of size N drawn from the model with parameter θ by XN (θ), with probability
density function (PDF) p(u;θ). For sample data u ∈ SN , the average log-likelihood function is defined to
be2

ℓ̂(θ|u) = 1

N
log p(u;θ) (1)

i.e., the logarithm of the PDF scaled by sample size. The maximum likelihood and maximum-likelihood
parameter estimate are given respectively by

ℓ̂(u) = sup
{

ℓ̂(θ|u) : θ ∈ Θ
}

(2)

θ̂(u) ≡ argmax
{

ℓ̂(θ|u) : θ ∈ Θ
}

(3)

We assume the model is identifiable, so that θ̂(u) is uniquely defined and ℓ̂(u) = ℓ̂
(

θ̂(u)|u
)

. On a point

of notation, for any sample statistic f̂(u), given θ ∈ Θ we write f̂(θ) for the random variable f̂(U) with

2We work exclusively with average log-likelihoods, so from here on we drop the “average log-”.
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U ∼ XN (θ); f̂(θ) is thus a random variable parametrised by θ. For a parameter θ itself, we write just θ̂
for its ML estimator θ̂(U).

Let

ℓ̂α(θ|u) =
∂

∂θα
ℓ̂(θ|u) , ℓ̂αβ(θ|u) =

∂2

∂θα∂θβ
ℓ̂(θ|u) , α, β = 1, . . . , r (4)

The Fisher information matrix associated with a parameter θ ∈ Θ is defined as

Iαβ(θ) ≡ −E
[

ℓ̂αβ(θ|U)
]

= −
∫

ℓ̂αβ(θ|u)p(u;θ) du1 . . . duN (5)

i.e., expectation is over U ∼ XN (θ). Writing Ω(θ) = I(θ)−1 for the inverse Fisher information matrix,
under certain conditions—which will apply in our case—we have ∀θ ∈ Θ

θ̂
p−→θ (6)

√
N

(

θ̂ − θ
) d−→N

(

0,Ω(θ)
)

(7)

as sample sizeN →∞; that is, the maximum-likelihood parameter estimate is consistent and (appropriately
scaled) asymptotically normally distributed with mean equal to the true parameter, and covariance given
by the inverse Fisher information matrix.

Suppose now that we have a composite nested null hypothesis H0 defined by θ ∈ Θ0, where Θ0 ⊂ Θ
is the s-dimensional null subspace, s < r. We write the maximum likelihood and maximum-likelihood
parameter under H0 as

ℓ̂0(u) = sup
{

ℓ̂(θ|u) : θ ∈ Θ0

}

(8)

θ̂0(u) ≡ argmax
{

ℓ̂(θ|u) : θ ∈ Θ0

}

(9)

respectively. The (log-)likelihood ratio statistic given the data sample u is then

λ̂(u) ≡ 2
[

ℓ̂(u)− ℓ̂0(u)
]

(10)

Note that ℓ̂(u) ≥ ℓ̂0(u) always, so λ̂(u) ≥ 0. Given θ, we write, as described earlier, λ̂(θ) for the θ-
parametrised random variable λ̂(U) with U ∼ XN (θ). Wilks’ Theorem (Wilks, 1938) then states that
under H0, the distribution of the sample log-likelihood ratio λ̂(θ) is asymptotically χ2-distributed:

∀θ ∈ Θ0 , Nλ̂(θ)
d−→χ2(d) (11)

as sample size N → ∞, where degrees of freedom d = r − s is the difference in dimension of the full and
null parameter spaces. Convergence is of order N− 1

2 . Crucially, (11) holds for any θ ∈ Θ0; i.e., given that
the null hypothesis holds, it doesn’t matter where in the null space the true parameter lies.

2.2 The generalised χ
2 family of distributions

We introduce a family of distributions that will play a critical role in what follows. Let Z ∼ N (0, B) be
a zero-mean n-dimensional multivariate-normal random vector with covariance matrix B, and A an n× n
symmetric matrix. Then (Jones, 1983) we write χ2(A,B) for the distribution of the random quadratic
form Q = ZTAZ. If A = B = I, then χ2(A,B) reduces to the usual χ2(n). If A is m×m and C is m× n,
then χ2(A,CBCT) = χ2(CTAC,B).

It is not hard to show (Mohsenipour, 2012) that if B is positive-definite and A symmetric (which
will be the case for the generalised χ2 distributions we encounter), then χ2(A,B) = χ2(Λ, I), where

3



Λ = diag(λ1, . . . , λn) with λ1, . . . , λn the eigenvalues of BA, or, equivalently, of RART where R is the
right-Cholesky factor of B (so that RTR = B). In that case, we have

λ1U
2
1 + . . .+ λnU

2
n ∼ χ2(A,B) , where Ui iid ∼ N (0, 1) (12)

so that χ2(A,B) is a weighted sum of independent χ2-distributed variables, and in particular if the λi are
all equal then we have a scaled χ2(n) distribution. From (12), moments of a generalised χ2 variable may
be conveniently expressed in terms of the eigenvalues; thus we may calculate that for Q ∼ χ2(A,B)

E[Q] = µ =
n
∑

i=1

λi (13a)

var[Q] = σ2 = 2
n
∑

i=1

λ2i (13b)

Empirically, it is found that generalised χ2 variables (at least for A symmetric and B positive-definite) are
very well approximated by Γ distributions: specifically, we have Q ≈ Γ(α, β) with

α =
µ2

σ2
(shape parameter) (14a)

β =
σ2

µ
(scale parameter) (14b)

2.3 VAR modelling

Given a wide-sense stationary, purely nondeterministic n-dimensional vector stochastic process Ut = [U1t,
. . . , Unt]

T, −∞ < t <∞ (Doob, 1953), under certain conditions (see below) it will have a stable, invertible—
and in general infinite-order—VAR representation

Ut =

∞
∑

k=1

AkUt−k + εt (15)

where εt is a white noise process, the sequence of n × n autoregression coefficient matrices Ak is square-
summable, and the n×n residuals covariance matrix Σ = E

[

εtε
T

t

]

is positive-definite. Sufficient conditions
for existence of such an invertible VAR representation—and which, importantly, also guarantee a similar
representation for any subprocess—are given in Geweke (1982) (see also Masani, 1966; Rozanov, 1967); we
assume those conditions for all vector stochastic processes from now on.

If Ak = 0 for k > p then (15) defines a finite-order VAR(p) model. We write A = [A1 . . . Ap] (an n× pn
matrix), and the model parameters are given by θ = (A,Σ). The dimensionality of the parameter space is
thus pn2 + 1

2n(n+ 1). The autocovariance sequence for the process Ut is defined by

Γk = E
[

UtU
T

t−k

]

, −∞ < k <∞ , (16)

and we have Γ−k = ΓT

k . By a standard trick, the process U
(p)
t =

[

UT

t UT

t−1 . . .U
T

t−(p−1)

]

T
satisfies a

pn-dimensional VAR(1) model

U
(p)
t = AU

(p)
t−1 + ε

(p)
t (17)

where the pn× pn “companion matrix” is given by

A =















A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0















(18)
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and ε
(p)
t =

[

εTt 0 . . . 0
]

T
with pn× pn covariance matrix

Σ =











Σ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











(19)

The spectral radius of the model is given by the largest absolute eigenvalue of A:

ρ(A) = max{|z| : |Iz −A| = 0} (20)

The model is stable iff ρ(A) < 1.
Taking the covariance of both sides of (17) yields

Γ−AΓAT = Σ (21)

where Γ is the pn× pn covariance matrix

Γ = E
[

U
(p)
t U

(p)T
t

]

(22)

The kℓ-block of Γ is given by Γkℓ = Γℓ−k for k, ℓ = 1, . . . , p. (21) is a discrete-time Lyapunov (DLYAP)
equation—which may be readily solved numerically—and is equivalent to (the first p of) the Yule-Walker
equations

Γk =

p
∑

ℓ=1

AℓΓk−ℓ + δk0Σ −∞ < k <∞ (23)

If the parameters (A,Σ) are known, the autocovariance sequence may be calculated from (21), or recursively
from (23); conversely, (A,Σ) may be calculated from Γ0, . . . ,Γp, e.g., by Whittle’s algorithm (Whittle,
1963). In sample, given a data sequence u = {u1, . . . ,uN}, ML parameters

(

Â(u), Σ̂(u)
)

may be calculated
via a standard ordinary least squares (OLS).

In the spectral domain (Hannan and Deistler, 2012), let ω ∈ [0, 2π] denote angular frequency in radians.
The transfer function for the VAR model (15) is defined as

Ψ(ω) = Φ(ω)−1 (24)

where

Φ(ω) = I −
∞
∑

k=1

Ake
−iωk (25)

is the Fourier transform of the VAR coefficients sequence. The cross-power spectral density (CPSD) matrix
S(ω) is given by the Fourier transform of the autocovariance sequence

S(ω) =
∞
∑

k=−∞
Γke

−iωk (26)

and conversely, the autocovariance sequence is the inverse transform of the CPSD:

Γk =
1

2π

∫ 2π

0
S(ω)eiωkdω (27)

S(ω) is Hermitian ∀ω, and satisfies the factorisation (Wiener and Masani, 1957)

S(ω) = Ψ(ω)ΣΨ(ω)∗ (28)

The CPSD S(ω), via (28), uniquely determines the VAR parameters, which may be factored out compu-
tationally, e.g., by Wilson’s algorithm (Wilson, 1972).

5



2.4 Granger-Geweke causality

Geweke (1982) defines the population (unconditional3) Granger causality statistic in the following context:
suppose that the process (15) is partitioned into subprocesses Ut = [XT

t Y T

t ]T of dimension nx, ny respec-
tively. The assumed regularity conditions on Ut (Geweke, 1982, Sec. 2) ensure that the subprocess Xt will
itself admit a stable, invertible VAR representation

Xt =
∞
∑

k=1

AR

kXt−k + εRt (29)

with square-summable coefficients AR

k and positive-definite residuals covariance matrix ΣR = E
[

εRt ε
RT

t

]

.
To define Granger causality, the reduced regression (29) is contrasted with the full regression; that is, the
x-component

Xt =

∞
∑

k=1

Ak,xxXt−k +

∞
∑

k=1

Ak,xyYt−k + εxt (30)

of (15). We stress here that:

1. The reduced model parameters (AR,ΣR) are fully determined by the full model parameters (A,Σ).

2. Even if the full regression (30) has finite order, the reduced regression (29) will in general not have
finite order.

The population Granger causality from Y →X for the VAR (15) with parameters θ is then defined as

FY →X(θ) = log

∣

∣ΣR
∣

∣

|Σxx|
(31)

The justification for the description of (31) as a “causal” statistic, is as follows: εxt in (30) repre-
sents the residual error associated with the optimal least-squares prediction E[Xt | Ut−1,Ut−2, . . .] =
∑∞

k=1Ak,xxXt−k +
∑∞

k=1Ak,xyYt−k of Xt by its own past Xt−1,Xt−2, . . . and the past Yt−1,Yt−2, . . .
of Yt. By contrast, εRt in (29) represents the residual error associated with the optimal prediction
E[Xt | Xt−1,Xt−2, . . .] =

∑∞
k=1A

R

kXt−k of Xt by its own past alone. Magnitudes of residual prediction
errors are then quantified by the generalised variances |Σxx| and

∣

∣ΣR
∣

∣ respectively (Wilks, 1932; Barrett
et al., 2010), leading to the interpretation of (31) as the extent to which inclusion of the past Yt−1,Yt−2, . . .
of Yt in the predictor set reduces the prediction error for Xt.

In the frequency domain, Geweke (1982) defines the (population, unconditional) spectral Granger
causality at angular frequency ω by

fY →X(ω;θ) = log
|Sxx(ω)|

∣

∣Sxx(ω)−Ψxy(ω)Σyy|xΨxy(ω)∗
∣

∣

(32)

Barnett and Seth (2011) introduce band-limited (frequency-averaged) spectral Granger causality

fY →X(F ;θ) = 1

|F|

∫

F
fY →X(ω;θ) dω (33)

where the frequency range F is a measurable subset of [0, 2π] (in practice usually an interval). fY →X(ω;θ)
averaged across all frequencies yields the corresponding time-domain GC (Geweke, 1982); that is,

fY →X([0, 2π];θ) =
1

2π

∫ 2π

0
fY →X(ω;θ) dω = FY →X(θ) (34)

3In this study we only address the unconditional case; but see Section 5.2.
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2.4.1 Likelihood-ratio estimation

Suppose given a finite-order VAR model.

Ut =

p
∑

k=1

AkUt−k + εt (35)

for the process Ut = [XT

t Y T

t ]T. For now, we assume that the model order p is known (in Section 5.1
we discuss infinite-order VAR models and model order selection). How then, given a data sequence u =
{u1, . . . ,uN} sampled from (35) with unknown parameters θ = (A,Σ), might FY →X(θ) be estimated? On
the face of it, FY →X(θ) is—uncoincidentally, as remarked in Geweke (1982)—a population log-likelihood-
ratio statistic, since the maximum (average) log-likelihood for a finite-order VAR model of the form (35)
is, up to a constant additive term, just −1

2 log |Σ̂(u)|, where Σ̂(u) is the ML (OLS) estimate for the
actual residuals covariance matrix Σ. But as regards estimation of FY →X(θ), a problem arises: while
the full model order p may be finite, the reduced model (29) will in general be of infinite order. We
might be tempted—as suggested in Geweke (1982, 1984), and, until recently, standard practice—to simply
truncate the reduced model at order p. Then (29) becomes a nested sub-model of (30), and plugging in
maximum-likelihood estimates Σ̂(u), Σ̂R(u) for the residuals covariance matrices Σ, ΣR in (31) yields a
true log-likelihood-ratio sample statistic

F̂ LR

Y →X(u) = log

∣

∣Σ̂R(u)
∣

∣

|Σ̂xx(u)|
(36)

for the composite null hypothesis
H0 : A1,xy = . . . = Ap,xy = 0 (37)

But here a problem arises: the resulting reduced model will be misspecified, and failure to take into account
sufficient lags of Xt in the reduced regression biases the resulting Granger causality estimator. Noting that
a VAR(p) model is also VAR(q) for q > p (coefficients Ak, p < k ≤ q can simply be set to zero), we could
attempt to remedy the situation by selecting a parsimonious model order q > p for the reduced model by
a standard (data sample length-dependent) model order selection criterion (McQuarrie and Tsai, 1998),
and extend the full model to order q. However, in doing so the full model becomes over-specified and the
variance of the resulting estimator is inflated. Furthermore, since the estimated model order will increase
with sample length N , it is not clear whether the estimator will be consistent in any meaningful sense.
We discuss this further in Section 5.1. This conundrum was explicitly identified by Stokes and Purdon
(2017)4, although its symptoms had previously been noted, particularly in the spectral domain (see e.g.,
Ding et al., 2006; Chen et al., 2006)5.

2.4.2 Single-regression estimation

The above issues may, however, be sidestepped. Given a finite-order VAR(p) model (35) (again, we assume
that p is known, and discuss infinite-order VAR models and model order selection in Section 5.1), the
reduced VAR (29) may not be assumed finite-dimensional, but the reduced residuals covariance matrix ΣR

will nonetheless be a continuous, deterministic function

ΣR = V (θ) (38)

4Stokes and Purdon (2017), having identified the LR estimator as problematic, concede that at the time they were unaware
that there were already estimators which obviate the problem (Stokes and Purdon, 2018). Other claims made in Stokes and
Purdon (2017) have also come under critical scrutiny (Faes et al., 2017; Barnett et al., 2018a,b; Dhamala et al., 2018).

5But note that the “block-decomposition” method presented in Chen et al. (2006) to address the conundrum—essentially
an attempt at constructing a single-regression estimator (see Section 2.4.2 below)—is incorrect (Solo, 2016).
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of the finite-dimensional full-model parameters θ = (A,Σ), with V (θ) = Σxx for θ ∈ Θ0. Given parameters
(A,Σ), the function V (θ) may be computed numerically to desired precision by spectral factorisation in the
frequency domain (Dhamala et al., 2008a,b), spectral factorisation in the time domain domain (Barnett
and Seth, 2014) or by a state-space method (Barnett and Seth, 2015; Solo, 2016) which devolves to solution
of a discrete algebraic Riccati equation (DARE); see Appendix B. Now from (31) and (38) the population
GC is

FY →X(θ) = log
|V (θ)|
|Σxx|

(39)

Then given a data sample u = {u1, . . . ,uN} we need only estimate the full VAR(p) model (35), to obtain
full-model ML parameter estimates θ̂(u); the reduced model estimate Σ̂R(u) = V

(

θ̂(u)
)

is calculated di-
rectly from the full-model estimates by one of the techniques described above, yielding the single-regression
Granger causality estimator

F̂ SR

Y →X(u) = log

∣

∣V
(

θ̂(u)
)∣

∣

∣

∣Σ̂xx(u)
∣

∣

(40)

Since ML parameter estimates are consistent, Σ̂xx

(

θ
) p−→Σxx, and by the Continuous Mapping Theorem

(CMT; Lehmann and Romano, 2005) V
(

θ̂
) p−→ΣR. Thus the SR estimator F̂ SR

Y →X(θ) = FY →X

(

θ̂
)

is
consistent.

3 Asymptotic null distribution for single-regression GC estimators

As regards statistical inference, LR sample statistics in general satisfy Wilks’ Theorem (Wilks, 1938), which
implies that they are asymptotically χ2(d)-distributed under the null hypothesis as sample size N → ∞,
with degrees of freedom d = qnxny, where q is the model order used for the full and reduced regressions;
see Section 5.1 for further discussion.

The SR estimator F̂ SR

Y →X(θ), however, is not a log-likelihood ratio, so Wilks’ Theorem does not apply,
and the asymptotic distribution under the null hypothesis (37) has thus far remained unknown6. This is
the principal subject of our study. We shall see that, unlike Wilks’ asymptotic null χ2 distribution, the
sampling distribution of the single-regression estimator under the null depends explicitly on the (true) null
parameters θ ∈ Θ0 themselves, raising some awkward questions regarding statistical inference, which we
address in Section 4.

We proceed with a technical result—essentially a multivariate 2nd-order Delta Method (Lehmann and
Romano, 2005)—on which our derivation of the asymptotic distributions for the time-domain and band-
limited SR estimators hinges:

Proposition 3.1. Let f(θ) be a non-negative, twice-differentiable function on a smooth r-dimensional man-
ifold Θ which vanishes identically on the s-dimensional hyperplane7 Θ0 ⊂ Θ specified by θ1 = . . . = θd = 0
with d = r − s. Then

a. The gradient ∇f(θ) is zero for all θ ∈ Θ0.

b. Writing a subscript “0” to denote the d× d upper-left submatrix of an r × r matrix, for θ ∈ Θ0 the

6The VAR single-regression estimator is a special case of the more general state-space GC estimator (Barnett and Seth,
2015; Solo, 2016). Solo (2016) claims without proof (and, as we shall see, incorrectly), that the asymptotic distribution of this
estimator will in general be χ2 under the null hypothesis. Barnett and Seth (2015), find through extensive simulation that
the state-space estimator under the null is well-approximated by a Γ distribution; this, we shall see, is well-explained here, at
least in the VAR case.

7If Θ0 is a general smooth submanifold of Θ, then Proposition 3.1 still holds around any given θ ∈ Θ0 modulo an appropriate
local transformation of coordinates.
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Hessian H(θ) = ∇2f(θ) takes the form

H(θ) =

[

H0(θ) 0
0 0

]

(41)

with H0(θ) positive-semidefinite.

c. For θ ∈ Θ0 let ϑN be a sequence of r-dimensional random vectors with
√
N(ϑN − θ)

d−→N (0,Ω) as
N →∞; cf. (7). Then

Nf(ϑN )
d−→χ2

(

1
2H0(θ),Ω0

)

as N →∞ (42)

See Appendix A for a proof.

3.1 The time-domain SR estimator

We shall apply Proposition 3.1 with f(θ) given by the FY →X(θ) of (39). Firstly, FY →X(θ) is non-negative
and vanishes on Θ0 (Geweke, 1982). Below we establish that it is also twice-differentiable (in fact analytic),
so that by Proposition 3.1 with ϑN the ML parameter estimate θ̂ for sample size N , we have for any θ ∈ Θ0

NF̂ SR

Y →X(θ)
d−→χ2

(

1
2H0(θ),Ω0(θ)

)

as N →∞ (43)

where H(θ) is the Hessian of FY →X(θ) and Ω(θ) the inverse Fisher information matrix for the VAR(p)
model (35) evaluated at θ. Here the “0” subscript denotes a submatrix corresponding to the null-hypothesis
variable indices x = {1, . . . , nx}, y = {nx + 1, . . . , n}.

To calculate the generalised χ2 parameters, we thus require firstly the null submatrix Ω0(θ) of the
inverse Fisher information matrix Ω(θ) for a VAR model specified by θ = (A,Σ); this is a standard
result. Let Γ be the autocovariance matrix of (22). Considering multi-indices [k, ij] for the regression
coefficients Ak,ij (so that k indexes lags and i, j variables), the entries for the inverse Fisher information
matrix corresponding to the Ak,ij are given by (Hamilton, 1994; Lütkepohl, 1993)

Ω(θ)[k,ij][k′,i′j′] = Σii′
[

Γ−1
]

kk′,jj′
(44)

where
[

Γ−1
]

kk′,jj′
denotes the jj′ entry of the kk′-block of Γ−1; or, expressed as a Kronecker product:

autoregression coefficients block of Ω(θ) = Σ⊗ Γ−1 (45)

Ω0(θ) is then given by the submatrix of (44) with i, i′ ∈ x and j, j′ ∈ y, which we write as

Ω0(θ) = Σxx ⊗
[

Γ−1
]

yy
(46)

Secondly, to calculate the null Hessian H0(θ), we require an expression for the function V (θ) of (38).
This we accomplish via the state-space formalism introduced in Barnett and Seth (2015). In Appendix B
we show that

V (θ) = AxyPA
T

xy +Σxx (47)

where the pny×pny symmetric matrix P is the solution of the discrete algebraic Riccati equation (DARE)

P −AyyPAT

yy = Σyy −
(

AyyPA
T

xy +Σyx

) (

AxyPA
T

xy +Σxx

)−1 (
AxyPAT

yy +ΣT

yx

)

(48)
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with

Ayy =















A1,yy A2,yy . . . Ap−1,yy Ap,yy

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0















Axy =
[

A1,xy A2,xy . . . Ap−1,xy Ap,xy

]

(49)

and

Σyy =











Σyy 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











Σyx =











Σyx

0
...
0











(50)

It is not hard to see that, by construction, FY →X(θ) = log |V (θ)| − log |Σxx| is an analytic function
of θ: calculation of V (θ) via (48) and (47) only involves algebraic operations (solution of multivariate
polynomial equations), and we know V (θ) to be positive-definite, so that |V (θ)| > 0 ∀θ and log |V (θ)| is
thus analytic.

To calculate H0(θ) we require derivatives up to 2nd order of V (θ), as defined implicitly through (47)
and (48), with respect to the null-hypothesis parameters (that is, with respect to Ak,ij for i ∈ x, j ∈ y),
evaluated for θ ∈ Θ0. From (47) we may calculate:

∂Vii′

∂Ak,uv

= δui
[

PAT

xy

]

k,vi′
+ δui′ [AxyP ]

k,iv
+

[

Axy
∂P

∂Ak,uv

AT

xy

]

ii′
(51)

where indices i, i′, u, u′ ∈ x, indices j, j′, v, v′ ∈ y and k, k′ = 1, . . . , p. Since Axy vanishes under the null
hypothesis, we have

∂Vii′

∂Ak,uv

∣

∣

∣

∣

θ∈Θ0

= 0 (52)

and from (51) we find
∂2Vii′

∂Ak,uv∂Ak′,u′v′

∣

∣

∣

∣

θ∈Θ0

= [δuiδu′i′ + δui′δu′i]Pkk′,vv′ (53)

We see then that P is required only on the null space Axy = 0, in which case the DARE (48) becomes a
DLYAP equation:

P −AyyPAT

yy = Σyy −Σyx[Σxx]
−1ΣT

yx (54)

We may now calculate the required Hessian. For null parameters θα, θβ , from the definition (39) and using
(52) we may calculate

∂2FY →X

∂θα∂θβ

∣

∣

∣

∣

θ∈Θ0

=
∂2 log |V |
∂θα∂θβ

∣

∣

∣

∣

θ∈Θ0

= trace

[

[Σxx]
−1 ∂2V

∂θα∂θβ

∣

∣

∣

∣

θ∈Θ0

]

(55)

(53) then yields
[H0(θ)][k,uv],[k′,u′v′] = 2

[

[Σxx]
−1

]

uu′ Pkk′,vv′ (56)

or
1
2H0(θ) = [Σxx]

−1 ⊗ P (57)

We note that in (54),

Σyy −Σyx[Σxx]
−1ΣT

yx = Σyy|x =











Σyy|x 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











(58)
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where Σyy|x−Σyx[Σxx]
−1Σxy is a partial covariance matrix. Thus (54) [cf. (21)] specifies the autocovariance

matrix [cf. (22)] for a notional ny-dimensional VAR(p) model with parameters (Ayy,Σyy|x). Accordingly,

we write P as Γyy|x from now on, so that (57) becomes 1
2H0(θ) = [Σxx]

−1⊗Γyy|x, and from (43) and (46)
it follows that

NF̂ SR

Y →X(θ)
d−→χ2

(

[Σxx]
−1 ⊗ Γyy|x,Σxx ⊗

[

Γ−1
]

yy

)

as N →∞ (59)

But from the transformation invariance χ2(CACT, B) = χ2(A,CTBC) and the mixed-product property of
the Kronecker product, we may verify that the Σxx terms cancel (Σxx is positive-definite, and thus has an
invertible Cholesky decomposition). We thus state our first principal result as

Theorem 3.1. The asymptotic distribution of the single-regression Granger causality estimator under the
null hypothesis θ ∈ Θ0 (i.e., Ak,xy = 0∀k) is given by

NF̂ SR

Y →X(θ)
d−→χ2

(

Ixx ⊗ Γyy|x, Ixx ⊗
[

Γ−1
]

yy

)

as N →∞ (60)

where Ixx is the nx × nx identity matrix, and Γ, Γyy|x satisfy the respective DLYAP equations

Γ−AΓAT = Σ (61a)

Γyy|x −AyyΓyy|xA
T

yy = Σyy|x (61b)

or, equivalently, the corresponding Yule-Walker equations (23). �

From (60) we see that the limiting distribution of NF̂ SR

Y →X(θ) is the sum of nx random variables

independently and identically distributed as χ2
(

Γyy|x,
[

Γ−1
]

yy

)

. Through (12), this distribution may be

expressed in terms of the eigenvalues of Ixx⊗
(

[

Γ−1
]

yy
Γyy|x

)

; these are in fact the eigenvalues λ1, . . . , λpny

of
[

Γ−1
]

yy
Γyy|x, where each λi appears with multiplicity nx. The asymptotic distribution of NF̂ SR

Y →X(θ)

under the null thus takes the form of a weighted sum of pny iid χ2(nx) variables:

λ1W1 + . . .+ λpnyWpny , Wi iid ∼ χ2(nx) (62)

The asymptotic mean and variance of NF̂ SR

Y →X(θ) for θ ∈ Θ0 are

E
[

NF̂ SR

Y →X(θ)
]

→ nx

pny
∑

i=1

λi (63a)

var
[

NF̂ SR

Y →X(θ)
]

→ 2nx

pny
∑

i=1

λ2i (63b)

respectively, from which the Γ-approximation of the generalised χ2 distribution may be obtained, via (13)
and (14). Figure 1 plots generalised χ2, Γ-approximation and empirical SR-estimator cumulative density
functions (CDFs) for a representative null VAR model with nx = 3, ny = 5 and p = 7 for several sample
sizes, illustrating asymptotic convergence with increasing sample length N . The Γ-approximation is barely
distinguishable from the generalised χ2.

We note that the eigenvalues λi are all > 0, since both
[

Γ−1
]

yy
and Γyy|x are guaranteed to be positive-

definite (this follows from the purely nondeterministic assumption on the process Ut). From (14a) and
(63), we find that the shape parameter of the Γ-approximation satisfies8

nx
2
≤ α ≤ pnxny

2
, (64)

8This follows from the identities
(
∑pny

i=1
λi

)2
=

∑pny

i=1
λ2

i +
∑pny

i,j=1
λiλj = pny

∑pny

i=1
λ2

i −
1

2

∑pny

i,j=1
(λi − λj)

2.
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Figure 1: Generalised χ2, Γ-approximation and empirical SR-estimator CDFs for a representative null
VAR model with nx = 3, ny = 5 and p = 7, for several sample sizes. The null VAR model was randomly
generated according to the scheme described in Appendix D, with spectral radius ρ = 0.9 and residuals
generalised correlation γ = 1. The generalised χ2 and Γ-approximation are almost indistinguishable.
Empirical GC plots were based on 104 generated time series for each sample lengths N . Inset figure: the
pny = 35 distinct eigenvalues for the generalised χ2 distribution, sorted by size. (Each eigenvalue will be
repeated nx = 3 times.)
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and α =
pnxny

2 ⇐⇒ all the λi are equal ⇐⇒ p = ny = 1, in which case the distribution of NF̂ SR

Y →X(θ) is
asymptotically χ2(nx) scaled by λ (cf. Section 3.3). We also state the following conjecture, which we have
tested extensively empirically, but have so far been unable to prove rigorously:

Conjecture 3.2. The eigenvalues of
[

Γ−1
]

yy
Γyy|x satisfy λi ≤ 1 for i = 1, . . . , pny.

If Conjecture 3.2 holds, then from (14b) and (63) the scale parameter of the Γ-approximation satisfies:

0 ≤ β ≤ 2 (65)

Simulations reveal that spectral radius and residuals generalised correlation of null parameters θ have a
strong effect on the distribution of the eigenvalues λi. Spectral radius close to 1 and large residuals cor-
relation give rise to a larger spread of eigenvalues < 1, resulting in asymptotic null sampling distributions
significantly different from a (non-generalised) χ2. Figure 2 presents the distribution of single-regression
estimator CDFs under random sampling of VAR models of given size, spectral radius and residuals gener-
alised correlation (see Appendix D for the VAR sampling method), where the effects of spectral radius and
residuals generalised correlation on the null distribution via the eigenvalues (inset figures) is clearly seen.

Assuming Conjecture 3.2, an immediate consequence of (63) and NF̂ LR

Y →X

d−→χ2(pnxny) is that for
θ ∈ Θ0

E
[

NF̂ SR

Y →X(θ)
]

≤ E
[

NF̂ LR

Y →X(θ)
]

(66a)

var
[

NF̂ SR

Y →X(θ)
]

≤ var
[

NF̂ LR

Y →X(θ)
]

(66b)

This suggests that, more generally, the SR estimator will have smaller bias and better efficiency than the
LR estimator9. As is apparent in Figure 2, the reduction in bias and variance is stronger for spectral radius
close to 1 and high residuals correlation.

3.2 The band-limited spectral SR estimator

We now consider the asymptotic null-distribution of the band-limited spectral Granger Causality estima-
tor f̂Y →X(F ;θ) (33) which facilitates inference on the corresponding band-limited population statistic
fY →X(F ;θ). As explained below, the appropriate null hypothesis in this case is in fact identical to the
time-domain (or “broadband”) null condition H0. Inference on fY →X(F ;θ) is nevertheless informative
beyond a time-domain test; thus while we may reject H0 in the neighbourhood of ω1 at some significance
level, we may fail to reject H0 at the same level around a different frequency ω2, with the implication that
while H0 likely does not hold, Granger causality is likely to be significant around ω1 but negligible around
ω2. In other words, while the time-domain test is sensitive to any (sufficiently large) deviation from the
null hypothesis—regardless of localisation in the frequency spectrum—the band-limited test is sensitive to
discrepancies within the specified frequency band, but insensitive to discrepancies outside this band. Thus
a significant band-limited test can justifiably be attributed to a sizeable contribution from the frequency
band in question, whereas a significant time-domain test allows only to draw the less-specific conclusion
that contributions from across the entire frequency range are potentially implicated in the result.

As we shall see in the following, the limiting asymptotic distribution under H0 of the band-limited
estimator f̂Y →X([ω−ε, ω+ε];θ) as ε→ 0 exists. It should not, however, be conflated with the asymptotic
distribution of f̂Y →X(ω;θ) under the point-frequency null hypothesis H0(ω) (see Section 5.2 for discussion
of the point-frequency case).

The point-frequency spectral GC fY →X(ω;θ) is non-negative, and for any ω clearly vanishes under
H0. We note further that by assumed stability of the VAR(p) (35), the inverse transfer function Φ(ω) does

9Strictly speaking we require the distributions of the estimators in the non-null case to draw this conclusion; but see also
Section 5.1.
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Figure 2: Distribution of Γ-approximation CDFs for a random sample of 200 null VARmodels (Appendix D)
with nx = 3, ny = 5 and p = 7, for a selection of spectral radii ρ and residuals generalised correlation γ. At
each scaled GC value, blue lines plot the mean of the Γ-approximation CDFs, while shaded areas bound
upper/lower 95% quantiles. Black lines plot the corresponding LR χ2 CDFs, with pnxny = 105 degrees of
freedom. Inset figures: the pny = 35 distinct eigenvalues sorted by size, for each of the 200 generalised χ2

distributions (x range is 1− 35, y range is 0− 1).
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not vanish, so that Ψ(ω)—and hence, via (28), S(ω) and consequently fY →X(ω;θ)—are analytic functions
of the phase angle ω [as well as of the θ = (A,Σ)]. For a frequency range F ⊆ [0, 2π] with measure
|F| > 0, then, fY →X(F ;θ) vanishes iff fY →X(ω;θ) is identically zero; i.e., precisely under the original null
hypothesis H0. Given a frequency range F , we thus apply Proposition 3.1 to the asymptotic distribution
of the band-limited spectral Granger causality estimator f̂Y →X(F ;θ) under the (appropriate) original null
hypothesis (37) H0 : Ak,xy = 0 ∀k.

In the previous section we calculated the covariance Ω0(θ) = Σxx⊗
[

Γ−1
]

yy
of null parameters underH0;

it remains to calculate the null Hessian H0(F ;θ). Since (Lebesgue) integration and partial differentiation
are linear operations, it follows that the Hessian for fY →X(F ;θ)—on the original null space Θ0—is just

H0(F ;θ) =
1

|F|

∫

F
H0(ω;θ) dω (67)

where, for given ω, H0(ω;θ) is the Hessian of fY →X(ω;θ) on Θ0 with respect to the original null parameters
Ak,xy, k = 1 . . . , p.

Dropping the “ω” and “θ” arguments for compactness where convenient, on the null space Θ0 we have
Φxy = 0, and since then Φ is lower block-triangular, we have also Ψxx = [Φxx]

−1, Ψyy = [Φyy]
−1, and

Ψxy = 0. The CPSD for the process Xt is given by

Sxx = [ΨSΨ∗]xx = ΨxxΣxxΨ
∗
xx +ΨxyΣyxΨ

∗
xx +ΨxxΣxyΨ

∗
xy +ΨxyΣyyΨ

∗
xy (68)

On the null space Sxx = ΨxxΣxxΨ
∗
xx so that [Sxx]

−1 = Φ∗
xx[Σxx]

−1Φxx,
We define T (ω) to be the nx × nx (Hermitian) matrix

T (ω) = Ψxy(ω)Σyy|xΨxy(ω)
∗ (69)

so that from (32) fY →X(ω) = log |Sxx(ω)|− log |Sxx(ω)−T (ω)|. T (ω) vanishes on the null space. We may
check that (for p, q, r, s = 1, . . . , n, k = 1, . . . , p)

∂Ψpq

∂Ak,rs

= ΨprΨsqe
−iωk (70)

from which we may calculate (with i, i′, u, u′ ∈ x, j, j′, v, v′ ∈ y)

∂Tii′

∂Ak,uv

=
∑

j,j′

[Σyy|x]jj′
(

ΨiuΨvjΨ̄i′j′e
−iωk + Ψ̄i′uΨ̄vj′Ψije

iωk
)

(71)

so that in particular,
∂T

∂θα

∣

∣

∣

∣

θ∈Θ0

= 0 for a null parameter θα, and we find [cf. (55)]:

∂2fY →X

∂θα∂θβ

∣

∣

∣

∣

θ∈Θ0

= trace

[

[Sxx]
−1 ∂2T

∂θα∂θβ

∣

∣

∣

∣

θ∈Θ0

]

(72)

for null parameters θα, θβ . From (71) and using (70), we may calculate

∂2Tii′

∂Ak,uv∂Ak′,u′v′

∣

∣

∣

∣

θ∈Θ0

= ΨiuΨ
∗
u′i′

[

Syy|x
]

vv′
e−iω(k−k′) +Ψiu′Ψ∗

ui′

[

Syy|x
]

v′v
eiω(k−k′) (73)

where
Syy|x = ΨyyΣyy|xΨ

∗
yy (74)

15



is the CPSD for a VAR(p) model with parameters (Ayy,Σyy|x) [cf. Section 2.4]. From (72) and (73) we
find

∂2fY →X

∂Ak,uv∂Ak′,u′v′

∣

∣

∣

∣

θ∈Θ0

=
[

[Σxx]
−1

]

uu′

{

[

Syy|x
]

vv′
e−iω(k−k′) +

[

Syy|x
]

v′v
eiω(k−k′)

}

(75)

=
[

[Σxx]
−1

]

uu′

[

Syy|xe
−iω(k−k′) + S̄yy|xe

iω(k−k′)
]

vv′
since Syy|x is Hermitian (76)

= 2
[

[Σxx]
−1

]

uu′ Re

{

[

Syy|x
]

kk′,vv′

}

(77)

where for given ω we define the pny × pny Hermitian matrix

[

Syy|x(ω)
]

kk′,vv′
= [Syy|x(ω)]vv′e

−iω(k−k′) (78)

or
Syy|x(ω) = Z ⊗ Syy|x(ω) , Zkk′ = e−iω(k−k′) (79)

We note that Syy|x(ω) is the CPSD for the “companion VAR(1)” [cf. (17)] of the VAR(p) model with
parameters (Ayy,Σyy|x), and as such may be thought of as the spectral counterpart of the autocovariance
matrix Γyy|x of Section 3.1. We thus have, for ω ∈ [0, 2π]:

H0(ω;θ) = [Σxx]
−1 ⊗Re

{

Syy|x(ω)
}

(80)

so that
H0(F ;θ) = [Σxx]

−1 ⊗Re
{

Syy|x(F)
}

(81)

with

Syy|x(F) =
1

|F|

∫

F
Syy|x(ω) dω (82)

We may thus state

Theorem 3.3. The asymptotic distribution of the single-regression band-limited Granger causality estimator
over a frequency range F ⊆ [0, 2π] under the null hypothesis H0 : Ak,xy = 0∀k, is given by

Nf̂Y →X(F ;θ) d−→χ2
(

Ixx ⊗Re
{

Syy|x(F)
}

, Ixx ⊗
[

Γ−1
]

yy

)

as N →∞ (83)

where Syy|x(F) is given by (74), (79) and (82), and Γ is as in Theorem 3.1. �

In particular, for F = [0, 2π] we have

[Syy|x([0, 2π])]kk′,vv′ =
1

2π

∫ 2π

ω=0
[Syy|x(ω)]kk′,vv′ dω

=
1

2π

∫ 2π

ω=0
[Syy|x(ω)]vv′e

−iω(k−k′)dω

= [Γyy|x]k′−k,vv′ by (27)

= [Γyy|x]kk′,vv′

so that
Syy|x([0, 2π]) = Γyy|x (84)

Thus we confirm that the distribution of f̂Y →X(F ;θ) is consistent with Theorem 3.1 and (34) for F =
[0, 2π]. We note that the limiting asymptotic distribution of f̂Y →X([ω − ε, ω + ε];θ) as ε→ 0 is obtained
by simply replacing Syy|x(F) by Syy|x(ω) in (83); as mentioned, this should not be confused with the

distribution of the point-frequency estimator f̂Y →X

(

ω;θ
)

under the null hypothesis (115).
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As before, the generalised χ2 distribution in (83) may be described in terms of the eigenvalues λi of
[

Γ−1
]

yy
Syy|x(F). For p > 2, since the null space of the null hypothesis H0 used to derive (83) has dimen-

sion pnxny—whereas for any given angular frequency ω the dimension of the point-frequency null H0(ω)
(Section 5.2) is 2nxny—only 2ny of the pny eigenvalues of

[

Γ−1
]

yy
Syy|x(ω) will be non-zero. In contrast to

the time-domain case, the eigenvalues of
[

Γ−1
]

yy
Syy|x(F) will not necessarily be ≤ 1 (cf. Conjecture 3.2),

but empirically we observe that the maximum eigenvalue shrinks to 1 as the bandwidth |F| increases to
2π.

3.3 Worked example: the general bivariate VAR(1)

In Appendix C we analyse the bivariate VAR(1)

Xt = axxXt−1 + axyYt−1 + εxt (85a)

Yt = ayxXt−1 + ayyYt−1 + εyt (85b)

with residuals covariance matrix E
[

εtε
T

t

]

=

[

σxx σxy
σyx σyy

]

, so that θ = (axx, axy, ayx, ayy, σxx, σxy, σyy). We

calculate that the (population) Granger causality from Y → X is given by

FY→X(θ) = log
v(θ)

σxx
(86)

where the reduced residuals covariance matrix—in this case the scalar V (θ) = v(θ)—is given by

v(θ) =
1

2

(

P +
√

P 2 −Q2
)

(87)

with
P = σxx(1 + a2yy)− 2σxyaxyayy + σyya

2
xy , Q = 2(σxxayy − σxyaxy) (88)

We apply Theorem 3.1 to calculate the asymptotic distribution of the SR estimator F̂ SR

Y→X(θ) on the
null space axy = 0. Noting that for model order p = 1, Γ = Γ0, and setting Γ−1

0 = [ωij ], we have
[Γ−1]yy = [Γ−1

0 ]yy = ωyy [Appendix C, eq. (154)]. The DLYAP equation (61b) for Γyy|x is just

Γyy|x − a2yyΓyy|x = σyy|x (89)

with

σyy|x = σyy −
σ2xy
σxx

= σyy
(

1− κ2
)

(90)

where κ =
σxy√
σxxσyy

is the residuals correlation, so that

Γyy|x =
(

1− κ2
) σyy
1− a2yy

(91)

and the single eigenvalue of [Γ−1]yyΓyy|x is just

λ =
(

1− κ2
) σyyωyy

1− a2yy
(92)

By Theorem 3.1 the asymptotic distribution of the single-regression estimator is thus a scaled χ2(1):

NF̂ SR

Y→X(θ)
d−→λ · χ2(1) = Γ

(

1

2
, 2λ

)

(93)
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(the Γ-approximation in this case is exact).
In Appendix C we calculate the spectral Granger causality from Y → X at ω ∈ [0, 2π] as

fY→X(ω;θ) = log
P −Q cosω

P −Q cosω − a2xyσyy|x
(94)

We find then that

Syy|x(ω) = σyy|x|ψyy(ω)|2 = σyy
(

1− κ2
) |1− axxz|2
|∆(ω)|2 (95)

with ∆(ω) = |Φ(ω)|. On the null space, ∆(ω) = (1− axxz)(1− ayyz), so that

Syy|x(ω) =
(

1− κ2
) σyy
|1− ayyz|2

=
(

1− κ2
) σyy
1− 2ayy cosω + a2yy

(96)

In this case, since the model order is p = 1, the null hypothesis (115) coincides with the null hypothesis
(37) (i.e., axy = 0), so that from Theorem 3.3 we have

Nf̂Y→X(ω;θ)
d−→λ(ω) · χ2(1) (97)

where
λ(ω) =

(

1− κ2
) σyyωyy

|1− ayyz|2
=

(

1− κ2
) σyyωyy

1− 2ayy cosω + a2yy
(98)

The asymptotic distribution for the band-limited estimator may then be calculated as per (82) by inte-
grating (96) across the appropriate frequency range10.

4 Statistical inference with the single-regression estimators

In this section we show how our principal results, Theorems 3.1 and 3.3, can be usefully applied to inference
on Granger causality FX→Y . The key difficulty in this endeavour is the fact that the asymptotic distribution
of the single-regression test statistics depends explicitly on the true null parameter, i.e. on its location in
the subset of the parameter space associated with the null hypothesis.

Assuming the VAR(p) class of models, and given time-series data u = {u1, u2, . . . , uN}, we can estimate
a ML parameter θ̂(u); but we cannot simply replace the VAR(p) true null parameter for the asymptotic
distribution by the ML estimate, since θ̂(u) cannot be assumed to lie in the null space Θ0. Our solution is
to project the ML parameter estimate onto the null space by a continuous projection Π : Θ→ Θ0 (so that in
particular Π ·θ = θ if θ ∈ Θ0). Here we might choose the obvious projection Π ·θ = (0, . . . , 0, θd+1, . . . , θr).
This yields a Neyman-Pearson test for the null hypothesis of zero Granger causality from Y → X, which
we term a “Projection Test”. Below we show that the Projection Test is “asymptotically valid”, in the
sense that the Type I error rate (incidence of false rejections of H0) may be limited to a prespecified level
α, and investigate statistical power of the SR estimators in terms of the Type II error rate (incidence of
failures to correctly reject H0) at a given level.

For brevity, in what follows F (· · · ) will refer to either the time-domain population SR statistic F SR

X→Y (· · · )
(39) or the band-limited population statistic fX→Y (F ; · · · ) (33) for some given frequency range F .

4.1 Type I error rate

Given a null parameter θ ∈ Θ0 under H0 (37) for a VAR(p) model, let Φθ(· · · ) be the CDF of the
corresponding asymptotic null Granger causality estimator; i.e., the generalised χ2 of (60) (time domain)
or (83) (band-limited). Given a data sample u of size N , the order-p Projection Test procedure at level α
is as follows:

10We may calculate that

∫

dω

1− 2a cosω + a2
=

2

1− a2
tan−1

(

1 + a

1− a
tan

ω

2

)

.
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1. Calculate the ML VAR(p) parameter estimate θ̂(u).

2. Calculate the GC estimate F
(

θ̂(u)
)

.

3. Reject the null hypothesis if

ΦΠ·θ̂(u)

(

NF
(

θ̂(u)
)

)

> 1− α (99)

We now investigate the asymptotic Type I error rate for this test. Let θ̂ be the ML parameter estimator
for a model with true parameter θ ∈ Θ0; recall that we consider θ̂ as a random variable parametrised by
θ, with implicit dependence on sample size N , and we note again that θ̂ may take values outside of Θ0.
The GC estimator is F

(

θ̂
)

(again, a sample size-dependent random variable parametrised by θ). Given
θ ∈ Θ0, the probability of a Type I error for the Projection Test is

PI(θ;α) = P
[

ΦΠ·θ̂

(

NF
(

θ̂
)

)

> 1− α
]

(100)

We wish to show that limN→∞ PI(θ;α) = α.

Lemma 4.1. Suppose given a sequence of pairs of real-valued random variables (Xn, Yn) such that

Xn
d−→X (101)

Yn
p−→ c (102)

where c is a constant. Then
P[Xn ≤ Yn] −→P[X ≤ c] (103)

Proof. By Slutsky’s Lemma (Lehmann and Romano, 2005), we have Xn − Yn d−→X − c. Thus ∀ ε > 0,
∃n0 ∈ N such that ∀n ≥ n0 we have

∣

∣P[Xn − Yn ≤ 0]−P[X − c ≤ 0]
∣

∣ < ε, or, equivalently
∣

∣P[Xn ≤ Yn]−
P[X ≤ c]

∣

∣ < ε, which establishes (103).

Now (100) is equivalent to

PI(θ;α) = 1−P
[

NF
(

θ̂
)

≤ Φ−1

Π·θ̂(1− α)
]

(104)

Since θ̂ is a consistent estimator for θ and Π is continuous with Π · θ = θ, by the Continuous Mapping
Theorem (CMT) we have Π · θ̂ p−→θ. It is not hard to verify that the inverse CDF Φ−1

θ (· · · ) evaluated at

1 − α is continuous in the θ argument, so that again by the CMT we have Φ−1

Π·θ̂(1 − α)
p−→Φ−1

θ (1 − α).
By Theorem 3.1, NF

(

θ̂
) d−→Qθ, where Qθ is a (generalised χ2) random variable with CDF Φθ. Applying

Lemma 4.1 to the pair-sequence
(

NF
(

θ̂
)

,Φ−1

Π·θ̂(1− α)
)

we have

PI(θ;α)−→ 1−P
[

Qθ ≤ Φ−1
θ (1− α)

]

= 1− Φθ

(

Φ−1
θ (1− α)

)

= α (105)

as required. While the rate of convergence of PI(θ;α) to α can be expected to depend on the true null
parameter θ, empirically we find that the effect is small11.

To gain insight into comparative Type I error rates and their parameter dependencies, we performed
the following experiment: at each data length N , we drew 1, 000 model samples θ from a distribution
θ̃ over the subspace Θ(ρ, γ) ⊂ Θ of null VAR models of given size, for a given spectral radius ρ and
residuals generalised correlation γ, according to the scheme described in Appendix D. For each model θ,

11The extent to which the choice of projection Π may affect the rate of convergence is unclear. It is plausible that orthogonal
projection with respect to the Fisher metric (Amari, 2016) evaluated at the null parameter may lead to faster convergence,
but we have not tested this hypothesis.
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we generate n = 1, 000 data sequences. For each data sequence we calculate LR and SR estimates of the
Granger causality, and test the estimates against the appropriate χ2 (resp. generalised χ2) asymptotic null
distribution at significance level α = 0.05. For a given VAR model θ, let p(θ) be the population Type I
error rate associated with the given data length, estimator, inference method and significance level. Each
of the n statistical tests on a given model is a Bernoulli trial, yielding a binomially-distributed estimator
p̂(θ) for p(θ); i.e., np̂(θ) ∼ B

(

n, p(θ)
)

:

P[np̂(θ) = k] =

(

n

k

)

p(θ)k[1− p(θ)]n−k , k = 0, . . . , n (106)

The p̂(θ) estimates are collated over model samples from θ̃, to yields a distribution p̂ for each data length
N ; explicitly,

P
[

np̂ = k | θ̃ = θ
]

= P[np̂(θ) = k] , k = 0, . . . , n (107)

Results for nx = 3, ny = 5, p = 7, γ = 1, N = 28 − 214 and a selection of spectral radii are presented
in Figure 3. We see that asymptotic convergence for the SR estimator Type I error rate is slightly better
on average than for the LR estimator, especially for smaller sample lengths and spectral radius ρ(A) (20)
close to 1.

Note that there are two sources of variation in the experiment: estimation error of the per-model error
rate, represented by the estimators p̂(θ), and variation across the distribution θ̃ of models. From the Law
of Total Variance, we may calculate that

var[p̂] = var
θ̃

[

p(θ̃)
]

+
1

n
E

θ̃

[

p(θ̃)[1− p(θ̃)]
]

(108)

We note that the second term is ≤ 1
4n , so that for large enough n the var

θ̃

[

p(θ̃)
]

term—the variance of

Type II error rate with respect to model variation—dominates; i.e., for large enough n the error bars are
essentially due to the effect of model variation on the GC estimates. In Figure 3, where the contribution
to the error bars from the per-model rate estimators p̂(θ) is small (of the order12 1√

n
≈ 0.032), the visible

dispersion is thus mostly due to model variation θ̃.

4.2 Type II error rate (statistical power)

As regards statistical power, the Type II error rate given a non-null parameter θ ∈ Θ, is given by

PII(θ;α) = P
[

ΦΠ·θ̂

(

NF
(

θ̂
)

)

≤ 1− α
]

(109)

For the likelihood-ratio statistic we have the classical result due to Wald (1943), which yields that the
scaled estimator is ≈ non-central χ2(pnxny;NF ) in the large-sample limit, where F is the population GC.
The approximation only holds with reasonable accuracy for “small” values of F . In the single-regression
case we have no equivalent result (but see discussion in Section 5). Clearly, PII(θ;α) will depend strongly
on the population GC value associated with specific parameters θ, but, as for the null case, will still
vary within the subspace of parameters which yield a given population statistic; that is, for given F > 0,
PII(θ;α) will vary over the set {θ : F (θ) = F}. We can at least say that, roughly

PII(θ;α) ≈ 0 for N ≫ Φ−1
θ (1− α)
F (θ)

(110)

PII(θ;α) ≈ 1 for N ≪ Φ−1
θ (1− α)
F (θ)

(111)

1295% quantiles correspond approximately to two standard deviations.
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Figure 3: Type I error rates at significance level α = 0.05 for the SR vs. LR estimator for null VAR models
with nx = 3, ny = 5, p = 7, γ = 1 and spectral radius ρ as indicated, plotted against data length N
(note log scale). Error bars represent 95% upper/lower quantiles; the dashed horizontal line indicates the
significance level. See text (Section 4.1) for simulation details.
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To compare statistical power (i.e., 1−Type II error rate) between the SR and LR estimators, and to
examine their dependencies on model parameters, we performed simulations on the bivariate VAR(1) of
Section 3.3. Results are displayed in Figure 4. We see (left-column figures) that for the SR estimator,
statistical power is roughly symmetrical around axx = ayy (we note that in this case, spectral radius is
max{|axx|, |ayy|}, so spectral radius “swaps” between axx and ayy along this line). Statistical power is
highest when axx and ayy are roughly equal in magnitude and opposite in sign. Parameter dependency
is stronger for larger residuals correlation κ. The power difference (right-column figures) between the
estimators is small when residuals correlation is small; for larger residuals correlation, there is again rough
(anti-)symmetry in the power difference around axx = ayy, but the dependencies are quite complex.

To gain some insight into comparative statistical power on more general VAR models, we also repeated
the experiment described in Section 4.1, but this time generating non-null models with population GC
F = 0.007 (see Appendix D), and testing for Type II errors. Results are presented in Figure 5. The overall
conclusion is that the SR and LR tests have similar statistical power, except when spectral radius is very
close to 1, where the LR test has somewhat higher power. Again, visible dispersion is mostly due to model
variation θ̃.

Figure 5 raises a puzzling point: we might suspect that the distribution of p̂ for the LR statistic has
small variance due to θ̃, since—at least in the null case—the asymptotic distribution depends only on
the problem size (degrees of freedom). This is not what our simulations show, however (see in particular
ρ = 0.99 and 210 ≤ N ≤ 212). But note that in the non-null case this may not apply; if we are in the “Wald
regime”, where F is “small”, then similar should apply, since the Wald non-central χ2 non-null asymptotic
distribution again depends only on degrees of freedom (and the actual GC value F ). We can only conclude
that for the particular parameters of the experiment, F lies beyond the ambit of Wald’s Theorem, so that
somewhat counter-intuitively—that is, despite the known dependence of the SR sampling distribution in
the null case on VAR parameters—variance of Type II error rate is generally smaller than for the LR case.

5 Discussion

In this study we have derived, for the first time, asymptotic generalised χ2 sampling distributions for the
(unconditional) single-regression Granger causality in the time domain, and for the band-limited single-
regression estimator in the frequency domain. We conclude with some discussion on implications, limita-
tions and future extensions of this work.

5.1 Unknown and infinite VAR model order

So far we have assumed that the model order of the underlying VAR model is both finite and known.
However, these restrictions will generally not be met in practice. The question, then, is how statistical
inference is affected when the true model order is unknown, infinite or both. Apart from some general
remarks (see below), we consider here only the case of finite, but unknown VAR model order p.

If the model order is unknown, statistical inference becomes a two-stage process: first we obtain a
parsimonious model order estimate p̂ using a standard selection procedure (McQuarrie and Tsai, 1998).
We then compute a test-statistic F (p̂)—the log-likelihood ratio or single-regression estimate—using the
selected model order; that is, maximum-likelihood VAR(p̂) parameter estimates are computed for the full
(and in the case of the LR estimator, reduced) models.

The central question is how the model order selection step should be performed so that the two-step
testing procedure as a whole is (1) asymptotically valid, and (2) is as statistically powerful as possible. We
consider first the implications of selecting a fixed model order q 6= p for inference on a VAR(p) process.
If q < p, then the asymptotic statements underlying the likelihood-ratio test (i.e. Wilks’ theorem) and
projection test (Theorem 3.1 above) no longer hold; thus, for instance, in the case of the LR statistic,

NF (q) d−→χ2(qnxny) fails under the null hypothesis (37). On the other hand, if q > p then Wilks’ theorem
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Figure 4: Statistical power (1 − Type II error rate) for the bivariate VAR(1) (85, Section 3.3), plotted
against null-space parameters axx, ayy for residuals correlation κ = 0.5 and κ = 0.9. Other parameters
were N = 104, ayx = 0, F = 10−4. Results were based on 104 simulated VAR(1) sequences for each set of
null-space parameters. Left column: statistical power for the SR estimator. Right column: difference in
statistical power (SR power − LR power).
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Figure 5: Type II error rates (1 − statistical power) at α = 0.05 for the SR vs. LR estimator for causal
VAR models with nx = 3, ny = 5, p = 7, γ = 1, population GC F = 0.007, and spectral radius ρ as
indicated; other details as in Figure 3.
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does apply, because (cf. Section 2.4.1) one can always subsume a VARmodel by a higher-order model. Thus,

under the null hypothesis, the asymptotic statement NF (q) d−→χ2(qnxny) is correct for fixed q > p, even
though the model is over-specified. However, simulation results suggest two problems associated with using
too-large a model order: firstly, the rate of convergence of the test statistic decreases with q—potentially
leading to inflated Type I errors in small samples—and secondly, statistical power is degraded.

These considerations imply that for the purposes of statistical inference, model order p̂ should be selected
for the full, rather than reduced process. Because the reduced process will in general be infinite order,
the reduced model order estimate will diverge to infinity as sample size increases, leading to suboptimal
inference as described above. For estimation of Granger causality as an effect size, however, efficiency
of the estimate takes precedence. For the SR estimator there is again no reason not to select for model
order based on the full process. For the LR estimator, although for fixed sample size N choice of full vs.
reduced model order selection runs into the bias-variance trade-off identified by Stokes and Purdon (2017)
(Section 2.4.1), empirical investigation reveals that, if model order p̂ is selected for the reduced process by
a standard scheme, both bias and variance tend to zero as N → ∞. This is explained by the observation
that p̂ grows comparatively slowly with increasing N . Indeed, if the population Granger causality F > 0
is small enough that the large-sample non-central χ2 approximation of Wald (1943) is viable for the LR
estimator, both bias and variance are O

(

p̂N−1
)

, while in general p̂ will grow more slowly than O(N)
(Hannan and Deistler, 2012, Chap. 5). Further research is required here, though ultimately the issue is of
little import since under the effect-size scenario there seems scant reason not to prefer the SR estimator
on grounds of efficiency; cf. the closing remarks in Section 3.1.

Given that model order is selected based on the full process, there is still a choice to be made regarding
which of the many possible selection criteria should be deployed. In this regard we note that if the model
order selection criterion utilised is consistent13 then the probability of choosing the correct model order
converges to 1 as N → ∞. In this case the asymptotic results underlying the likelihood-ratio test and
single regression projection test remain valid even if the model order has to be estimated:

lim
N→∞

P
[

F (p̂) ≤ ε
]

= lim
N→∞

(

P[p̂ = p]P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ = p

]

+P[p̂ 6= p]P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ 6= p

])

= lim
N→∞

P[p̂ = p]P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ = p

]

+ lim
N→∞

P[p̂ 6= p]P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ 6= p

]

= lim
N→∞

P[p̂ = p]P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ = p

]

+ 0

= lim
N→∞

P
[

F (p̂) ≤ ε
∣

∣

∣
p̂ = p

]

We have shown (Theorem 3.1 and Section 4.1) that for the Projection Test the final limit is the CDF of
the corresponding generalised χ2 distribution evaluated at ε, while for the LR test, by Wilks’ theorem it is
the CDF of the corresponding χ2 distribution evaluated at ε. Hence, the convergence statements justifying
these tests still hold, and the corresponding two-step procedures including the model selection step are
asymptotically valid.

As regards the infinite-order VAR case, establishing an asymptotically-valid scheme would seem to be
more difficult, and merits further research. Preliminary experiments indicate that, at least for VARMA
(equivalently state-space) processes, the (autoregressive) SR estimator with consistent model order selection
yields asymptotically valid inference, in the sense that the Type I error rate converges to a specified
significance level α (cf. Section 4.1), and is also more efficient than the LR estimator. This seems reasonable,
given the possibility (see Section 5.2 below) of extending the analysis in this study to the state-space GC
estimator (Barnett and Seth, 2015; Solo, 2016).

13Note that the popular Akaike Information Criterion (AIC) is not consistent, whereas, e.g., Schwartz’ Bayesian Information
Criterion (BIC) and Hannan amd Quinn’s Information Criterion (HQIC; Hannan and Quinn, 1979) are consistent.
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5.2 Extensions and future research directions

We make the observation here that any estimator of the form f
(

θ̂
)

, where θ̂ is the ML parameter estimator,
will converge in distribution to a generalised χ2 distribution under the associated null hypothesis θ ∈ Θ0

if the statistic f(θ) satisfies the prerequisites for Proposition 3.1. This covers a range of extensions to our
results, which we list below. They vary in tractability according to the difficulty of explicit calculation of
the Fisher information matrix Ω0(θ) and Hessian H0(θ) for θ ∈ Θ0.

• The conditional case

Extending the time-domain Theorem 3.1 to the conditional case (Geweke, 1984) is reasonably straight-
forward. Given a partitioning Ut = [XT

t Y T

t ZT

t ]
T of the variables, the time-domain conditional

population Granger causality statistic is given by

FY →X|Z(θ) = log

∣

∣ΣR

xx

∣

∣

|Σxx|
(112)

where now the reduced regression is

Xt =
∞
∑

k=1

AR

k,xxXt−k +AR

k,xzZt−k + εRx,t (113)

Zt =

∞
∑

k=1

AR

k,zxXt−k +AR

k,zzZt−k + εRz,t (114)

with residuals covariance matrix ΣR = E
[

εRt ε
RT

t

]

=

[

ΣR

xx ΣR

xz

ΣR

zx ΣR

zz

]

. Again, ΣR is a deterministic (albeit

more complicated) function V (θ) of the VAR parameters, which may again be expressed in terms of
a DARE (Barnett and Seth, 2015). Although more complex, derivation of the appropriate Hessian
proceeds along the same lines as in Section 3.1.

Extension to the conditional case in the frequency domain (band-limited estimator) is substantially
more challenging, due to the complexity of the statistic; see e.g., Barnett and Seth (2015, Sec. II).
Note that while the unconditional spectral statistic only references the full model parameters, in the
conditional case both full and reduced model parameters are required.

• The spectral point-frequency estimator

The null hypothesis H0(ω) for vanishing of fY →X(ω;θ) (32) at the point frequency ω is Ψxy(ω) = 0,
where Ψ(ω) is the transfer function (24) for the VAR model, or (Geweke, 1982)

H0(ω) :























p
∑

k=1

Ak,xy cos kω = 0

p
∑

k=1

Ak,xy sin kω = 0

(115)

For given ω, (115) represents 2nxny constraints on the pnxny regression coefficient matrices14 Ak.
Calculation of the point-frequency asymptotic sampling distribution is in principle approachable via
a similar technique as before (Proposition 3.1 must be adjusted for the case of more general linear
constraints). However, we contend that in real-world applications it makes more sense in any case
to consider inference on spectral Granger causality on a (possibly narrow-band) frequency range

14So if ω 6= kπ for any k, then if p ≤ 2 we have the original H0 : Ak,xy = 0; cf. Section 3.3.
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via the band-limited spectral GC fY →X(F ;θ) (33) as discussed in Section 3.2 rather than at point
frequencies. Firstly, for a given VAR(p), if the “broadband” null condition H0 is not satisfied, then
the point-frequency null condition H0(ω) will only be satisfied precisely at most at a finite number
of (in practice unknown) point frequencies. Secondly, real-world spectral phenomena are likely to be
to some extent broadband [e.g., power spectra of neural processes (Mitra and Bokil, 2008)] and/or
otherwise blurred by noise.

The asymptotic sampling distribution of the point-frequency estimator is nonetheless at least of
academic interest, since as far as the authors are aware, it remains unknown. Calculation of the point-
frequency sampling distribution under the null hypothesis H0(ω) is by no means intractable (at least
in the unconditional case), although the computation of the Hessian is considerably complicated
by the more restrictive null condition (115). The condition is, at least, linear, so may be readily
transformed to conform to the preconditions for Proposition 3.1.

• The single-regression F -test statistic

Granger causality may be tested using a standard F -test for vanishing of the appropriate regression
coefficients (Hamilton, 1994). The population test statistic is

trace
[

ΣR
]

− trace[Σxx]

trace[Σxx]
, (116)

and the corresponding dual-regression estimator scaled by d2/d1 is asymptotically F (d1, d2)-distributed
under the null hypothesis, where d1 = pnxny and d2 = nx[N − p(nx + ny + 1)] are the respective de-
grees of freedom. Anecdotally, (see, e.g., Hamilton, 1994; Lütkepohl, 2005), and especially for smaller
sample lengths, this may yield a more powerful test than the (dual-regression) LR test. It would thus
be of interest to investigate whether the single-regression F -statistic form (116) obtained by setting
ΣR = V (θ) as in (38) similarly yields a more powerful test than the single-regression Geweke form
(39). This statistic satisfies the conditions for Proposition 3.1, and the Hessian is as easily calculated
as in Section 3.1.

We remark that the statistic (116) is less useful as a quantitative measure of causal effect, as it lacks
the information-theoretic interpretation of the Geweke form (31) (Barnett et al., 2009; Barnett and
Bossomaier, 2013), nor is it invariant under as broad a set of transformations (Barrett et al., 2010),
or under invertible digital filtering (Barnett and Seth, 2011).

• The state-space Granger causality statistic

The state-space GC statistic, unconditional and conditional, in time and frequency domains, was
introduced in Barnett and Seth (2015) (see also Solo, 2016), and is calculated from the innovations-
form state-space parameters θ = (A,C,K,Σ), for which reduced-model parameters AR and CR are
known, while KR and ΣR appear as solutions of a certain DARE (cf. Section 3.1 and Appendix B).
The state-space approach extends GC estimation and inference from the class of finite-order VAR
models to the super-class of state-space (equivalently VARMA) models. The power of the method
derives from the fact that (i) unlike for the class of finite-order VAR models, the class of state-
space models is closed under subprocess extraction (an essential ingredient of the Granger causality
construct), and (ii) many real-world data, notably econometric and neurophysiological, have a strong
moving-average component, and are thus more parsimoniously represented as VARMA rather than
pure VAR models. The class of state-space models is in addition—again in contrast to the finite
order VAR class—closed under sub-sampling, temporal/spatial aggregation, observation noise, and
digital filtering – all common features of real-world data acquisition and observation procedures.

The single-regression GC statistic as defined here for a VAR(p) model is essentially the state-space
GC statistic for a state-space model which describes the same stochastic process (Section 3.1 and
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Appendix B). The state-space estimator may be defined in similar terms to the VAR case, i.e., based
on ML estimates for the model parameters. In comparison with the VAR case, there are two challenges
to derivation of the asymptotic null sampling distribution for the state-space GC estimator via the
2nd-order Delta Method (Proposition 3.1): (i) calculation of the Fisher information (i.e., distribution
of the ML parameter estimators), and (ii) non-linearity of the null condition (Barnett and Seth, 2015,
eq. 17). While (ii) complicates calculation of the Hessian, (i) is likely to present a more formidable
obstacle, due to the considerable complexity of a closed-form expression for the Fisher information
matrix (Klein et al., 2000).

5.3 The alternative hypothesis

We may consider two approaches to approximating the sampling distribution of the time-domain and
band-limited spectral estimators, which address two distinct scenarios.

In the first scenario, we suppose given a fixed true parameter θ /∈ Θ0, and consider the asymptotic
sampling distribution of the GC statistic as sample length N → ∞. In this case, the preconditions of
Proposition 3.1 certainly do not apply; in particular, the gradient of the statistic will not in general vanish
at θ, so that a 1st-order multivariate Delta Method is appropriate. This yields a normal distribution for
the estimator, with mean equal to the population GC. If the statistic is f

(

θ̂
)

, then explicitly we have

√
N

[

f
(

θ̂
)

− f(θ)
]

d−→N
(

0,∇f(θ) · Ω(θ) · ∇f(θ)T
)

(117)

The variance
σ2 = ∇f(θ) · Ω(θ) · ∇f(θ)T (118)

may be computed from the known form of the statistic, although the gradients are harder to calculate,
since (1) in the time domain the DARE does not, as in the null case (Section 3.1) collapse to a DLYAP
(54), while (2) in the spectral band-limited case (Section 3.2), the transfer function Ψ(ω;θ) is no longer
block-triangular. Gradients, furthermore, must be calculated with respect to all (rather than just null)
parameters.

This scenario is more pertinent in a realistic empirical situation where, for instance, we are reasonably
confident (via a Projection Test as described in Section 4.1) that an estimated GC is significantly different
from zero, and we would like to put confidence bounds on the estimate; it addresses the efficiency of the
estimator.

Under the second—and more difficult to analyse—scenario, we suppose that sample length N is fixed
(but large), and we consider the limiting distribution of the single-regression GC estimator as the true non-
null parameter approaches the null subspace Θ0. We are now in the territory of Wald (1943), where the
asymptotics of the Taylor expansion (on which the 1st- and 2nd-order Delta Methods are based) become
a “balancing act” between sample length N and the distance between the true parameter and the null
subspace. This is likely to be difficult to calculate; we conjecture that (by analogy with Wald’s Theorem)
the asymptotic distribution will be a non-central generalised χ2. This scenario is more pertinent to analysis
of the power of the statistic.

5.4 Concluding remarks

In this study we analysed the hitherto unknown large-sample behaviour of single-regression Granger causal-
ity estimators. As quantitative measures of causal effect/information transfer, these estimators clearly
outperform their (problematic) classical dual-regression likelihood-ratio counterparts, through consistency
and reduced bias and variance. Studying their asymptotic null distributions is therefore of importance, as
it admits the construction of novel and tailored hypothesis tests. We have shown the distributions to be
generalised χ2 in both the time-domain and band-limited spectral case, and obtained the distributional
parameters in readily-calculated form. Based on these results, we introduced a novel asymptotically-valid
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“Projection Test” of the null hypothesis of vanishing causality. This test should prove especially useful
for testing Granger causality on specified frequency bands, a commonplace desideratum in various fields of
application, including neuroimaging and econometric time-series analysis. We showed that the approach
remains valid even if the model order is unknown, provided a consistent model order selection criterion
is used. Our approach may be extended to the conditional case, and, potentially, beyond pure autore-
gressive modelling to causal inference based on the state-space Granger causality estimator. Finally, we
outlined an approach to evaluation of the sampling distribution under the alternative hypothesis, knowl-
edge of which would be useful for the analysis of statistical power and construction of confidence bounds.
These extensions merit further detailed investigation, being highly relevant to a wide range of practical
applications.
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Appendices

A Proof of Proposition 3.1

Let θ = [xT yT]T where xi = θi, i = 1, . . . , d and yj = θd+j , j = 1, . . . , s. Since by definition f(0,y) = 0 ∀y,
we have immediately ∇yf(0,y) = 0 ∀y. Treating y as fixed, we expand f(x,y) in a Taylor series around
x = 0:

f(x,y) = ∇xf(0,y)x+ 1
2x

T∇2
xxf(0,y)x+ 1

2x
TK(x,y)x (119)

where for fixed y, K(x,y) is a d× d matrix function of x, and limx→0 ‖K(x,y)‖ = 0. Now we show that
since f(x,y) is non-negative, we must have ∇xf(0,y) = 0 ∀y. Suppose, say, ∇x1

f(0,y) = −g < 0. Setting
x1 = ε > 0 [if ∇x1

f(0,y) > 0 we take x1 = −ε] and x2 = . . . = xd = 0, (119) yields

f(x,y) = −gε+ 1
2

[

∇2
x1x1

f(0,y) +K11(x,y)
]

ε2 (120)

Now since limε→0 ‖K(x,y)‖ = 0, we can always choose ε small enough that

1
2

[

∇2
x1x1

f(0,y) +K11(x,y)
]

ε < g (121)

so that f(ε, 0, ..., 0,y) < 0, a contradiction. Thus we have ∇xf(0,y) = 0 ∀y, proving 3.1a.
From (119) we thus have

f(x,y) = 1
2x

T∇2
xxf(0,y)x+ 1

2x
TK(x,y)x (122)

To see that ∇2
xxf(0,y) must be positive-semidefinite, we assume the contrary. We may then find a unit

d-dimensional vector u such that uT∇2
xxf(0,y)u = −G < 0. Setting x = εu, we may then choose ε small

enough that uTK(εu,y)u < G, so that again f(x,y) is negative and we have a contradiction. Finally,
∇2

xyf(0,y) = ∇2
yyf(0,y) = 0 ∀y follows directly from (122), and we have established 3.1b.
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We now prove 3.1c using a 2nd-order Delta Method (Lehmann and Romano, 2005). Let θ ∈ Θ0. Since
f(θ) and its gradient ∇f(θ) both vanish, the Taylor expansion of f(ϑN ) around θ takes the form

f(ϑN ) = 1
2 (ϑN − θ)T H(θ) (ϑN − θ) + (ϑN − θ)TK(ϑN ) (ϑN − θ) (123)

where H(θ) = ∇2f(θ) is the Hessian matrix of f evaluated at θ, and limθ′→θK(θ′) = 0. Multiplying both
sides by the sample size N , we have

Nf(ϑN ) = 1
2

[√
N (ϑN − θ)

]

T

H(θ)
[√

N (ϑN − θ)
]

+
[√

N (ϑN − θ)
]

T

K(ϑN )
[√

N (ϑN − θ)
]

(124)

But by assumption
√
N(ϑN − θ)

d−→Z as N → ∞, where Z ∼ N (0,Ω). Thus, by the CMT (Van der
Vaart, 2000), we have

Nf(ϑN )
d−→ 1

2Z
TH(θ)Z (125)

as N →∞, and 3.1c follows immediately from (125) and 3.1b.

B State-space solution for the reduced VAR model parameters

Following Barnett and Seth (2015), given a VAR(p) model (35) with parameters θ = (A; Σ), with A =
[A1 A2 . . . Ap], we create an equivalent “innovations form” state-space model (Hannan and Deistler, 2012)

Zt+1 = AZt +Kεt (126a)

Ut = CZt + εt (126b)

where

A =















A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0















C =
[

A1 A2 . . . Ap−1 Ap

]

K =















I
0
0
...
0















(127)

A is the pn× pn state transition matrix [the companion matrix (18) for the VAR(p) (35)], K the pn× n
Kalman gain matrix, and C the n × pn observation matrix. As before, we use notation x for the indices
1, . . . , nx, y for the indices nx + 1, . . . , n and (after the the Matlab R© convention) a colon to donate “all
indices”. The subprocess Xt then satisfies the state-space model

Zt+1 = AZt +Kεt (128a)

Xt = CRZt + εx,t (128b)

with CR = Cx:. This state-space model is no longer in innovations form; we can, however (see Barnett
and Seth, 2015) derive an innovations-form state-space model for Xt by solving the discrete-time algebraic
Riccati equation (DARE)

P −APAT = Q−KRΣRKRT

ΣR = CRPCRT +R (129)

KR =
(

APCRT + S
) [

ΣR
]−1

30



with

Q =











Σ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











S =











Σ:x

0
...
0











R = Σxx (130)

which are, respectively, pn× pn, pn× nx and nx × nx. Then

Zt+1 = AZt +KRεRt (131a)

Xt = CRZt + εRt (131b)

is in innovations form [note that the εRt are precisely the reduced residuals in (29)] and we may solve
the DARE for ΣR, which implicitly defines the mapping (38) ΣR = V (θ) which is required for the single-
regression GC statistic F SR

Y →X(θ) (39).
We may, in fact, confirm that KR,ΣR are solutions of the lower-dimensional DARE

P −AyyPAT

yy = Σyy −KRΣRKRT

ΣR = AxyPA
T

xy +Σxx (132)

KR =
(

AyyPA
T

xy +Σyx

) [

ΣR
]−1

where P is pny × pny,

Ayy =















A1,yy A2,yy . . . Ap−1,yy Ap,yy

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0















Axy =
[

A1,xy A2,xy . . . Ap−1,xy Ap,xy

]

(133)

which are, respectively, pny × pny and nx × pny, and

Σyy =











Σyy 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











Σyx =











Σyx

0
...
0











(134)

respectively, pny × pny, pny × nx. To see this, we note that under our assumptions, the solution of the
DARE (129) exists, and is unique (Solo, 2016). Then, setting

Pkl =

[

0nx×nx 0nx×ny

0ny×nx Pkl

]

(135)

we may verify that

P =







P11 · · · P1p
...

...
Pp1 · · · Ppp






(136)

solves the original DARE (129) if

P =







P11 · · · P1p
...

...
Pp1 · · · Ppp






(137)

solves the reduced-dimension DARE (132).
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C Granger causality for a general bivariate VAR(1) process

Consider the bivariate VAR(1)

Xt = axxXt−1 + axyYt−1 + εxt (138a)

Yt = ayxXt−1 + ayyYt−1 + εyt (138b)

with parameters

A =

[

axx axy
ayx ayy

]

, Σ = E
[

εtε
T

t

]

=

[

σxx σxy
σyx σyy

]

(139)

The transfer function is then Ψ(ω) = Φ(ω)−1 with Φ(ω) = I − Az, and we have the spectral factorisation
(28) of the CPSD S(ω) of the VAR process, which holds for z on the unit circle |z| = 1 in the complex
plane. Setting ∆(ω) = |Φ(ω)| (determinant), we have

Ψ(ω) =

[

1− axxz −axyz
−ayxz 1− ayyz

]−1

= ∆(ω)−1

[

1− ayyz axyz
ayxz 1− axxz

]

(140)

This leads to

S(ω) = |∆(ω)|−2

[

1− ayyz axyz
ayxz 1− axxz

] [

σxx σxy
σyx σyy

] [

1− ayy z̄ ayxz̄
axy z̄ 1− axxz̄

]

(141)

on z = 1, where z̄ is the complex conjugate of z; here, for a complex variable w, |w| denotes the norm√
ww̄.
We wish to calculate the GC FY→X . If v is the residuals variance for the VAR representation of the

subprocess Xt, then the GC is just FY→X = log v − log σxx. To solve for v we could use the state-space
method of Barnett and Seth (2015), but here we use an explicit spectral factorisation for the CPSD Sxx(ω)
of Xt.

Let ψ(ω) be the transfer function of the process Xt. It then satisfies the spectral factorisation

Sxx(ω) = v|ψ(ω)|2 (142)

with ψ(0) = 1. We may now calculate (we denote terms we don’t need by “· · · ”).

S(ω) = |∆(ω)|−2

[

1− ayyz axyz
· · · · · ·

] [

σxx σxy
σyx σyy

] [

1− ayy z̄ · · ·
axy z̄ · · ·

]

= |∆(ω)|−2

[

1− ayyz axyz
· · · · · ·

] [

σxx(1− ayy z̄) + σxyaxy z̄ · · ·
σyx(1− ayy z̄) + σyyaxy z̄ · · ·

]

We now calculate [with z = e−iω so that Re{z} = 1
2(z + z̄) = cosω]:

Sxx(ω) = |∆(ω)|−2 {(1− ayyz)[σxx(1− ayy z̄) + σxyaxy z̄)] + axyz[σyx(1− ayy z̄) + σyyaxy z̄)]}
= |∆(ω)|−2

{

σxx|1− ayyz|2 + σxyaxy[(1− ayyz)z̄ + (1− ayy z̄)z] + σyya
2
xyzz̄

}

= |∆(ω)|−2
{

σxx[1− ayy(z + z̄) + a2yy] + σxyaxy(z + z̄ − 2ayy) + σyya
2
xy

}

= |∆(ω)|−2
{

σxx[1− 2ayy cosω + a2yy] + 2σxyaxy(cosω − ayy) + σyya
2
xy

}

and finally
Sxx(ω) = |∆(ω)|−2(P −Q cosω) (143)

where we have set

P = σxx(1 + a2yy)− 2σxyaxyayy + σyya
2
xy (144a)

Q = 2(σxxayy − σxyaxy) (144b)
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The form of this expression suggests that the transfer function ψ(ω) should take the form

ψ(ω) = ∆(ω)−1(1− bz) (145)

for some constant b. Note that this implies that Xt is ARMA(2,1). Then |ψ(ω)|2 = |∆(ω)|−2(1 + b2 −
2b cosω) and the spectral factorisation Sxx(ω) = v|ψ(ω)|2 now reads:

v(1 + b2 − 2b cosω) = P −Q cosω (146)

This must hold for at point on the unit circle—i.e., for all ω—so we must have

v(1 + b2) = P (147)

vb = 1
2Q (148)

We may now solve for v. The second equation gives v2b2 = 1
4Q

2, so multiplying the first equation through
by v we obtain the quadratic equation for v:

v2 − Pv + 1
4Q

2 = 0 (149)

with solutions

v =
1

2

(

P ±
√

P 2 −Q2
)

(150)

We need to take the “+” solution, as this yields the correct (zero) result for the null case axy = 0. Note that
only the Y → X “causal” coefficient axy and the Y autoregressive coefficient ayy appear in the expression
for FY→X .

From (32), the spectral GC from Y → X is

fY→X(ω) = log
P −Q cosω

P −Q cosω − a2xyσyy|x
(151)

where

σyy|x = σyy −
σ2xy
σxx

= σyy
(

1− κ2
)

(152)

with κ =
σxy√
σxxσyy

the residuals correlation.

For the sampling distributions, we shall also need the (inverse of) the covariance matrix Γ0 of the process

[XT

t Y
T

t ]
T on the null space axy = 0. Solving the DLYAP equation Γ0−AΓ0A

T = Σ for Γ0 =

[

p r
r q

]

yields

p =
(

1− a2xx
)−1

σxx (153a)

r = (1− axxayy)−1
[

σxy + axxayx
(

1− a2xx
)−1

σxx

]

(153b)

q =
(

1− a2yy
)−1

[

σyy + 2ayyayx(1− axxayy)−1σxy + a2yx(1 + axxayy)
(

1− a2xx
)−1

(1− axxayy)−1σxx

]

(153c)

and we have in particular

ωyy = [Γ−1
0 ]yy =

p

pq − r2 (154)

Note also that in the null case axy = 0, the spectral radius is ρ = max (|axx|, |ayy|).
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D Parametrised sampling of the VAR model space

Consider, for given number of variables n and model order p, the parameter space Θ = {(A,Σ) : A is n×
pn with ρ(A) < 1 ,Σ is n × n positive-definite} of VAR(p) models. Firstly, we note that the residuals
covariance matrix Σ can be taken to be a correlation matrix; this can always be achieved by a rescaling
of variables leaving Granger causalities invariant. Further GC invariances under linear transformation of
variables (Barrett et al., 2010) allow further effective dimensional reduction of Θ; however, even under these
general transformations, and under the constraint ρ(A) < 1, the quotient space of Θ has infinite Lebesgue
measure15; thus we cannot generate uniform variates (it is questionable whether this would in any case be
appropriate to a given empirical scenario). Here we utilise a practical and flexible scheme for generation of
variates on Θ, parametrised by spectral radius ρ, log-generalised correlation16 γ = − log |Σ| +∑

i log Σii,
and population GC F = FY →X(θ), all of which have a critical impact on GC sampling distributions.

To generate a random correlation matrix Σ of dimension n with given generalised correlation γ, we use
the following algorithm:

1. Starting with an n × n matrix with components iid ∼ N (0, 1), we compute its QR-decomposition
[Q,R]. The matrix Mij = Qij · sign(Rjj) is then a random orthogonal matrix.

2. Next we create a random n-dimensional variance vector v with components vi iid ∼ χ2(1). The
matrix V = M · diag(v) ·MT is then positive-definite, and for the corresponding correlation matrix
Σij = Vij/

√

ViiVjj we have γ∗ = −∑

i log vi +
∑

i log Vii.

If necessary, we repeat steps 1,2 until γ∗ ≥ γ (this may fail if γ is too large).

3. Using a binary chop, we find a constant c such that, iteratively replacing v ← v + c, γ∗ falls within
an acceptable tolerance of γ (this generally converges). The correlation matrix Σ is then returned,

For a VAR coefficients matrix sequence A = [A1 A2 . . . Ap], the spectral radius ρ(A) is given by (20). If
λ is a constant, it is easy to show that if Ã is the sequence [λA1 λ

2A2 . . . λpAp], then ρ
(

Ã
)

= λρ(A).
Thus any VAR coefficients sequence may be exponentially weighted so that its spectral radius takes a
given value. Such weighting, however, has the side-effect of exponential decay of the Ak with lag k, which
is, anecdotally, unrealistic17. We observe empirically that we can compensate for this decay reasonably
consistently across number of variables and model orders by scaling all coefficients by Ak by e−

√
pw for some

constant w; here we choose w = 1, which generally achieves a more realistic gradual and approximately
linear decay. To generate a random VAR model with given generalised correlation γ and given spectral
radius ρ, our procedure is as follows:

1. We generate a random correlation matrix Σ with generalised correlation γ as described above.

2. We generate p n×n coefficient matrices Ak with components iid ∼ N (0, 1). The Ak are the weighted
uniformly by e−

√
pw.

To enforce the null condition Ak,xy = 0,

3. The Ak,xy components are all set to zero.

4. The Ak coefficients sequence is scaled exponentially by an appropriate constant λ, so as to achieve
the given spectral radius ρ.

To instead enforce a given (non-null) population GC value F ,

15Although the space of n× n correlation matrices has finite measure.
16For Gaussian covariance matrices, log-generalised correlation coincides with multi-information (Studený and Vejnarová,

1998). If R = (ρij) is a correlation matrix with all ρij ≪ 1 for i 6= j, then − log |R| ≈
∑

i<j
ρ2ij .

17At least, in the authors’ experience, for neural or econometric data.
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3. The Ak,xy components are scaled uniformly by a constant c.

4. The Ak coefficients sequence is scaled exponentially by an appropriate constant λ, so as to achieve
the given spectral radius ρ.

Under steps 3, 4 the population GC depends monotonically on c; consequently,

5. We perform a binary chop on c, iterating steps 3, 4 until the GC is within an acceptable tolerance of
F (this generally converges quickly).

In all simulations except for the bivariate model (Section 3.3), we used γ = 1; spectral radii and population
GC values are as indicated in the plots. Convergence tolerances were set to18

√
machine ε.
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