000873709 001__ 873709
000873709 005__ 20240712113248.0
000873709 0247_ $$2doi$$a10.1021/acs.analchem.8b05819
000873709 0247_ $$2ISSN$$a0003-2700
000873709 0247_ $$2ISSN$$a0096-4484
000873709 0247_ $$2ISSN$$a1520-6882
000873709 0247_ $$2ISSN$$a1541-4655
000873709 0247_ $$2altmetric$$aaltmetric:62270401
000873709 0247_ $$2pmid$$apmid:31203614
000873709 0247_ $$2WOS$$aWOS:000474477900013
000873709 037__ $$aFZJ-2020-00932
000873709 082__ $$a540
000873709 1001_ $$0P:(DE-Juel1)169132$$aJehnichen, Philipp$$b0
000873709 245__ $$aOperando Raman Spectroscopy Measurements of a High-Voltage Cathode Material for Lithium-Ion Batteries
000873709 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2019
000873709 3367_ $$2DRIVER$$aarticle
000873709 3367_ $$2DataCite$$aOutput Types/Journal article
000873709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581088542_25822
000873709 3367_ $$2BibTeX$$aARTICLE
000873709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873709 3367_ $$00$$2EndNote$$aJournal Article
000873709 520__ $$aAs a high-voltage spinel, LiNi0.5Mn1.5O4 (LNMO) is a promising candidate for high energy density cathodes in lithium-ion batteries (LiBs). The material has not yet achieved any commercial success, as there remain problems with capacity fade after extended charge and discharge cycling. In order to enable improvements, it is necessary to understand the fundamental underlying processes in the material. In this experimental study, we present operando Raman measurements to investigate the potential-resolved structural evolution of ordered LNMO as a cathode material during the charging and discharging process. Using the method of Raman spectroscopy, only two phases can be unequivocally distinguished in the case of ordered LNMO, namely, LiNi0.5Mn1.5O4 and Ni0.5Mn1.5O4 (NMO). The half-delithiated phase, Li0.5Ni0.5Mn1.5O4, cannot be discriminated by using this spectroscopic method. The dynamics of the phase changes between LiNi0.5Mn1.5O4 and Ni0.5Mn1.5O4 differ for lithiation and delithiation. Long-term operando Raman measurements of half-cells prove that a decomposition of the solvent takes place and that the conductive salt LiPF6 is consumed, i.e., the concentration of PF6– is strongly decreasing. The solvent component ethylene carbonate (EC) is preferentially decomposed during the cycling process, and byproducts such as esters and alcohols can be detected.
000873709 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873709 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000873709 588__ $$aDataset connected to CrossRef
000873709 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b1$$eCorresponding author
000873709 773__ $$0PERI:(DE-600)1483443-1$$a10.1021/acs.analchem.8b05819$$gVol. 91, no. 13, p. 8054 - 8061$$n13$$p8054 - 8061$$tAnalytical chemistry$$v91$$x1520-6882$$y2019
000873709 8564_ $$uhttps://juser.fz-juelich.de/record/873709/files/acs.analchem.8b05819.pdf$$yRestricted
000873709 8564_ $$uhttps://juser.fz-juelich.de/record/873709/files/acs.analchem.8b05819.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873709 909CO $$ooai:juser.fz-juelich.de:873709$$pVDB
000873709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169132$$aForschungszentrum Jülich$$b0$$kFZJ
000873709 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169132$$aRWTH Aachen$$b0$$kRWTH
000873709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b1$$kFZJ
000873709 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b1$$kRWTH
000873709 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873709 9141_ $$y2019
000873709 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873709 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAL CHEM : 2017
000873709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873709 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873709 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873709 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000873709 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873709 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bANAL CHEM : 2017
000873709 920__ $$lyes
000873709 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000873709 980__ $$ajournal
000873709 980__ $$aVDB
000873709 980__ $$aI:(DE-Juel1)IEK-14-20191129
000873709 980__ $$aUNRESTRICTED
000873709 981__ $$aI:(DE-Juel1)IET-4-20191129