
Implementation of Genfit2 as an
experiment independent track-fitting

framework

Tadeas Bilka[1], Nils Braun[2], Thomas Hauth[2], Thomas Kuhr[3], Lia

Lavezzi[4, 5], Felix Metzner[2], Stephan Paul[6], Elisabetta Prencipe[7, a],

Markus Prim[2], Johannes Rauch[6], James Ritman[7, 8], Tobias Schlüter[9],

Stefano Spataro[5]

[a] = corresponding author
[1] Charles University of Prague (CZ);[2] Karlsruher Institut für Technologie (DE); [3] Ludwig-
Maximilians-Univesität München (DE); [4] Institute of High Energy Physics (CN); [5] Universitá
di Torino and INFN (IT); [6] Technische Universität München (DE); [7] Forschungszentrum
Jülich (DE); [8] Ruhr-Universität Bochum (DE); [9] LP-Research Inc. (JP)

Abstract

The Genfit toolkit, initially developed at the Technische Universität München,
has been extended and modified to be more general and user-friendly. The new
Genfit, called Genfit2, provides track representation, track-fitting algorithms and
graphic visualization of tracks and detectors, and it can be used for any experiment
that determines parameters of charged particle trajectories from spacial coordinate
measurements. Based on general Kalman filter routines, it can perform extrapo-
lations of track parameters and covariance matrices. It also provides interfaces to
Millepede II for alignment purposes, and RAVE for the vertex finder. Results of
an implementation of Genfit2 in basf2 and PandaRoot software frameworks are
presented here.

February 14, 2019

ar
X

iv
:1

9
0

2
.0

4
4

0
5

v
2

  
[p

h
y

si
cs

.d
at

a-
an

] 
 1

3
 F

eb
 2

0
1

9



CONTENTS 2

Contents

1 Introduction 3

2 Motivation for an experiment-independent track-fitting toolkit 5

3 Track parameterization and extrapolation 5

4 Linearization 7

5 Structure of the code 8

5.1 Track data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Handling of multiple measurements in one TrackPoint . . . . . . . . . . . . . . . 11

5.4 Runge-Kutta track representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Fitter implementation 13

6.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Deterministic annealing filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 Generalized broken lines fitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Vertex reconstruction 17

8 Performance 18

8.1 Application of the Genfit2 standalone toolkit . . . . . . . . . . . . . . . . . . . 18

8.2 Visualization of tracks in basf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8.3 Performance of Genfit2 in basf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8.4 Performance of Genfit2 in PandaRoot . . . . . . . . . . . . . . . . . . . . . . . 27

9 Conclusion 29

10 Bibliography 32



1 INTRODUCTION 3

1 Introduction

Track reconstruction is an essential part of most nuclear and particle physics experiments.

Genfit2 [1] is an experiment-independent modular framework for track-fitting and other

related tasks. The project is open-source and available on GitHub1.

All particle physics experiments need to identify and classify processes based on detector

signals. Combining these signals to recover particle trajectories is the task called “track recon-

struction”: suitable collections of measurements must be combined into track candidates. Tracks

must be fitted, and points of common origin or exit, vertices, must be found and fitted. Track

finding and track fitting are not independent from each other. Steps of different levels of track

finding and refining alternate with track-fitting steps. Fitted tracks from different tracking sub-

detectors can be matched and combined into larger tracks; and single measurements can be

appended to existing tracks, which might come from another subdetector. With provided suit-

able collections of measurements and detector geometry, all these tasks can be performed by

Genfit2.

Genfit2 extends and improves the work previously performed by Genfit [2], the external

tracking tool available in the PandaRoot releases since 2009. PandaRoot [3, 4] is the official

software framework of the PANDA Collaboration [5], which is building a future p̄p experiment

investigating reactions where an antiproton beam with momentum between 1.5 GeV/c and 15

GeV/c impinges on a fixed target. PANDA, which will be located at the international FAIR

facility in Darmstadt (Germany), will consist of two main sections: the target spectrometer,

which will have a solenoidal magnetic field (B = 2 T); and a forward spectrometer, which will

include a dipole field with 2 T·m maximum bending power.

The new Genfit2 toolkit was already successfully used during a test of the Belle II high-

level trigger architecture and the combined Belle II vertex detector readout architecture [6]. It

is used for recorded Phase 2 data and huge MC productions. Belle II [7] is a major upgrade of

the Belle detector [8], which operates in a solenoid magnetic field of 1.5 T at an e+e− collider in

Tsukuba (Japan), running at a center of mass energy equal to that of the Υ(4S)2. During the

aforementioned test it served for online track reconstruction in the data reduction stage of the

1https://github.com/GenFit/GenFit.
2The Belle II experiment concluded the Phase 2 data taking period on July 17th, 2018. During the

Phase 3, planned on spring 2019, the experiment will run at the energy in the center of mass of the Υ(4S)
and Υ(3S).



1 INTRODUCTION 4

high-level trigger, as well as for offline analysis. It was also used to supply input to the Millepede

II alignment software [9].

This paper documents the implemented classes, how to use them, and also presents perfor-

mance results with the PandaRoot and the basf2 software frameworks. The latter is the official

Analysis and Software Framework [10, 11] of the Belle II Collaboration. This document is orga-

nized as follows: after this general introduction to Genfit2, the motivation to build this toolkit

is presented in the second Section. In Section 3 and 4, generalities about track parameteriza-

tion, extrapolation and linearization are provided; the documentation of the Genfit2 classes is

given in Section 5, with the description of the general structure of this modular code. Section 6

describes the different track fitters available in Genfit2 ; Section 7 provided a short description

of the interface between Genfit2 and RAVE [12]; Section 8 shows the performace in basf2 and

PandaRoot; finally, the work is summarized in the Conclusion.



2 MOTIVATION FOR AN EXPERIMENT-INDEPENDENT TRACK-FITTING TOOLKIT 5

2 Motivation for an experiment-independent track-fitting

toolkit

In order to perform an analysis it is necessary to measure the position of a particle with its

uncertainty, and have a knowledge of the particle momentum.

A measurement is a processed electronic signal recorded by a detector, which serves as input

to the reconstruction algorithms. Physics analyses generally work with particle tracks. Tracks

can e.g. be parametrized by an Euclidean position ~x and momentum ~p with the corresponding

covariance matrix. To form a track from a set of measurements, two tasks have to be performed:

track-finding and track-fitting. Track-finding groups measurements which are likely to originate

from the same particle into track candidates. This is a task on its own, and will not be detailed

here. Track-fitting takes the track candidates as input, and computes track parameters at any

given point along the track, together with the covariance matrix of the track parameters, taking

in consideration effects due to particle interactions with materials and the magnetic fields.

Several high-energy-physics experiments implement their own track fitters; however, they

use similar algorithms, such as the well known Kalman filter [13]. The idea of Genfit2 is

to provide an open-source, modular and extensible framework which is capable of performing

track-fitting and other related tasks, and can easily be adapted to various experimental setups.

Smaller experiments, which do not have the manpower to develop their own track fitter, or new

experiments which need a working tool to do research and development, are encouraged to use

Genfit2.

3 Track parameterization and extrapolation

In the absence of interaction, the trajectory of a particle with charge q in a magnetic field B is

determined by the equations of motion, given its momentum vector p, in a single point along

the track. In order to describe a track, its trajectory has to be parameterized. In a general

geometry, and inside a magnetic field, it is most useful to use the distance along the track s as

free parameter, and then give the values:

(q/p, u, v, u′, v′) (1)

where u, v are the rectangular coordinates of a plane which the track intersects at distance s,

and u′, v′ are the direction cosines, i.e. the projections of the direction of momentum on the



3 TRACK PARAMETERIZATION AND EXTRAPOLATION 6

coordinate axes. If the plane is that of a planar detector, it is most useful to have u (and v)

coincide with the coordinate(s) measured by the detector.

Genfit2 extrapolates tracks using the standard Runge-Kutta-Nyström method [14] as mod-

ified by Bugge and Myrheim to carry along the Jacobian matrix [15, 16]. The code shares the

same pedigree as the STEP extrapolation code used in the ATLAS experiment [17, 18]. The

corresponding class in Genfit2 is RKTrackRep.

During the Runge-Kutta extrapolation, global track parameters are used, namely q/p, the

spatial coordinates x = (x, y, z)T and the unit tangent vector pointing along the track, i.e. the

derivative of x with respect to the track length s.

In order to reduce bias of the final fit result due to inaccurate seed values, which can lead

to failed linearization of the Kalman filter, usually several fitting steps are done until the fit

converges. For example, we can assume here that the track is e.g. processed three times in

forward and backward directions, giving an accurate estimation of the track parameters at the

starting position of the track. The last backward update of one iteration is usually taken as a

starting value for the next iteration. In order to minimize the bias of the starting values, their

covariance has to be very large. However, if it is too large, numerical problems can arise. It is

practical to multiply the covariance of the starting value by a factor of 500 up to 1000 between

2 iterations. This factor can of course be adjusted by the user, depending on the specific case.

The fitter has a minimum and maximum number of iterations, which are assigned default

values of 2 and 4, respectively, or the user can assign other values. As soon as the minimum

number of iterations has been reached, the tool checks if the p-value has changed by less than a

certain amount with respect to the previous iteration. The default value to check if the fit should

perform a next iteration is set to 10−3. However, tracks with a p-value close to zero are often

considered as converged with this criterion, while the χ2, albeit big, is still changing significantly,

indicating that the fit is still improving. This situation occurs often for tracks which are given

bad seed values. Thus, a non-convergence criterion has been introduced: if the relative change

in χ2 from one iteration to the next is more than 20%, the fit will continue. The value of this

non-convergence criterion can be defined by the user.

After the extrapolation has reached the target surface, global coordinates are converted to

local coordinates (see Eq. (1)), and the Jacobian for the extrapolation is calculated from the

Jacobian matrices of the extrapolation steps Ji together with those of the coordinate changes



4 LINEARIZATION 7

local→global on the starting plane A, and global→local on the target plane B as:

FA→B = JB
global→localJnJn−1 · · · J1JA

local→global. (2)

More details about the global→local coordinate system transformation are given in the next

Sec. 4 and Appendix A.

4 Linearization

All implemented track fitting algorithms use a discrete model, where the particle travels from

detector plane A to detector plane B such that the parameters on plane B are given as a function

of the parameters on plane A, i.e. pB = hA→B(pA), and the Jacobian of this transport is the

derivative of this function. Following the notation in Ref. [27], we use the symbol:

FA→B ≡ ∂hA→B(p)
∂p

∣

∣

∣

p=pA

.

The covariance of the track parameters on plane B can then expressed as:

CB = FA→BCAF
T
A→B +NA→B, (3)

where NA→B is the noise matrix evaluated by the track extrapolation algorithm. The evaluation

of (pB, CB) is referred to as prediction.

Each measurement mi gives rise to a residual ri, the difference between the measurement

expected based on the track parameters pi and the measured value, which in general is given as:

ri = mi − fi(pi), (4)

where f is the measurement function which calculates the expected measurement given a set of

track parameters. The measurement itself has a covariance matrix Vi. Since our track param-

eterization uses planar coordinates, this can be brought into a simple linear form when the u

(and v for two-dimensional detectors) direction and zero point of the plane - in which the track

parameters are given - coincide with that of the measured coordinates,

ri = mi −Hipi. (5)

In this way, no further linearization is needed in order to apply the Kalman filter to this mea-

surement model, and Hi is a constant projection matrix for each detector. In general, Hi has to

be replaced with the derivative of fi.



5 STRUCTURE OF THE CODE 8

The evaluation of FA→B and NA→B on the other hand cannot be eliminated by such a judi-

cious choice of coordinates, and its value depends on the unknown track parameters. Especially

the first few hits pose a problem: the track parameters only become determined successively

while the transport matrix already needs to be evaluated.

Genfit2 has two approaches to this problem:

• use the current result of the track fit, which may lead to imprecise or false results (it is

the SimpleKalmanFitter described in Sec. 6);

• use information from the track finders to estimate an initial set of transport and noise

matrices, then after each iteration of the fit prepare a new set of matrices which is used in

the next iteration (it is the ReferenceKalmanFitter described in Sec. 6).

5 Structure of the code

Genfit2 is a C++ object-oriented modular tool, structured as shown in Fig. 1. It provides

general track-fitting tools, which are based on three pillars:

Figure 1: Structure of the Genfit2 package [1].



5 STRUCTURE OF THE CODE 9

Figure 2: Track parametrization in the Genfit2 class RKTrackRep.

• measurements;

• track representations;

• fitting algorithms.

Measurements serve as objects containing measured coordinates from a detector. They

provide functions to construct a (virtual) detector plane and to provide measurement coordinates

and covariance in that plane. The abstract base class AbsMeasurement defines the interface. A

measurement can be one-dimensional (e.g. a line segment measured by a semiconductor strip

detector), two-dimensional (e.g. a position on a semiconductor pixel detector or a drift isochrone

of a wire detector), or three-dimensional (e.g. a point in space measured by a Time Projector

Chamber (TPC)). Genfit2 comes with predefined measurement classes for various detector

types, which are called PlanarMeasurement, WireMeasurement and SpacePointMeasurement.

In Genfit2, state vectors p and measurements m are given in local coordinate systems (see

formulae in Appendix A), which are defined by detector planes and implemented in the DetPlane

class. A detector plane has an origin ~o, and is spanned by two orthogonal unit vectors ~u and ~v.

The normal vector ~n is then equal to ~u × ~v (see Fig. 2). Measurements provide a matrix that

can project the state p and covariance C into the measurement coordinate system of m and its

covariance V . For the Kalman filter mathematics, which are detailed in Appendix A, the state

p and covariance C have to be projected into the measurement coordinate system of m and V .

These projections are described by matrices, as in Eqs. 6-8.

If we consider a silicon strip detector with strips parallel to ~u, the coordinate v in the local



5 STRUCTURE OF THE CODE 10

plane system reads as:

m = (v) . (6)

The H matrix now simply has to project out the v component of p:

H =
(

0 0 0 0 1
)

. (7)

Now, Hp is the projected state, and HCHT is the projected covariance.

For a detector which measures u and v, the following applies:

m =
(

u v
)

(8)

H =

(

0 0 0 1 0
0 0 0 0 1

)

. (9)

For planar detectors, the detector plane is given by the detector geometry, whereas for wire and

spacepoint measurements, so-called virtual detector planes are constructed by extrapolating the

track to the point of closest approach (POCA3) to the spacepoint or wire. Additional detectors

effects can be used here, allowing one to compensate for detector deformations like plane bending,

wire sagitta, and misalignment during this procedure.

Drift-time corrections and cluster fits (track-dependent clustering) are possible.

5.1 Track data structure

All per-track data is kept in the Track object. It holds a set of TrackPoint objects, which can

contain Measurements, FitterInfo objects, which hold all fitter-specific information, and thin

scatterers (currently only used in the GBL fitter, see Section 6.3).

A Track contains one or more track representations, representing the particle hypotheses that

should be used for the fit. One of them must be selected as the cardinal track representation.

This can be done by the user or by Genfit2, which selects the track representation that best fits

the measurements (e.g. it has the lowest χ2). The Track also contains a FitStatus object, which

stores general information (number of iterations, convergence, etc.) and fit properties (χ2, NDF,

p-value, track length, etc.). The track candidate (TrackCand) serves as a helper class, basically

storing indices of raw detector hits in TrackCandHit objects, which can also be overloaded by

the user to store additional information. WireTrackCandHit objects can store the left-right

ambiguity.

3POCA stands for Point of Closest Approach.



5 STRUCTURE OF THE CODE 11

A possible use case for this possibility to incorporate within these objects is the pattern

recognition: algorithms can work on raw objects that have a lighter weight content than a

Measurement, or implement other features needed by the pattern recognition, but not neces-

sarily by Genfit2.

5.2 Pruning

The Genfit2 class MeasurementFactory can build a Track from a TrackCand. This Track can

then be processed by the various fitting algorithms. After fitting, Track objects contain a lot

of data: track representations, TrackPoint objects with measurements, FitterInfo objects, etc.

Usually, not all of this information needs to be stored on disk. For example, for physics analysis

only parameters related to the vertex and information on the track quality are necessary. The

user can decide which data to keep, e.g. only the fitted state of the first TrackPoint, and only

for the cardinal track representation.

5.3 Handling of multiple measurements in one TrackPoint

Wire detectors measure a drift isochrone (a cylinder, in the simplest case). Intersected with

the detector plane, this gives two (one dimensional) measurements, since the particle could have

passed on either side of the wire. Genfit2 provides the possibility to store several measurements

of the same type in one TrackPoint4. These tracks can also be fitted with the Kalman filter,

therefore Genfit2 provides several options how to handle multiple measurements:

• average: the average of the individual measurements is calculated. This option is primarily

used for the DAF (see Sections 6.1 and 6.2).

• closest to prediction: the measurement which is closest to the state prediction is selected.

• closest to reference: the measurement which is closest to the reference track is selected.

This can only be used with the Kalman filter with reference track.

• closest to prediction/reference for wire measurements: if the TrackPoint has one

WireMeasurement, select the side which is closest to the prediction/reference. Otherwise,

it makes use of the average.

4This feature allows the DAF to assign weights to the TrackPoint. More information related to the
DAF are in Sec. 6.2.



5 STRUCTURE OF THE CODE 12

For wire measurements, it turned out that selecting the side which is closest to the state

predictions is often the best option. The average weigthed measurement m and its covariance V

are calculated from the individual measurements i as follows:

V =

(

∑

i

(

wiV
−1
i

)

)−1

m = V ·
∑

i

(

wiV
−1
i mi

)

(10)

5.4 Runge-Kutta track representation

The Runge-Kutta track representation (RKTrackRep) is based on a Runge-Kutta extrapolator

adapted from Geant3 [19]. An abstract interface class interacts with the detector geometry.

Implementations using the Root class TGeoManager [20] and Geant4 class G4Navigator [21] are

available.

The state p is parametrized with 5 coordinates in a local plane coordinate system, as already

shown in Fig. 2. The cartesian position ~x and direction ~a translate into plane coordinates

according to the following equations:

p =
(

q/p, u′, v′, u, v
)T

u′ =
~a · ~u
~a · ~n

v′ =
~a · ~v
~a · ~n

u = (~x− ~o) · ~u

v = (~x− ~o) · ~v.

(11)

where q is the charge of the track, and p its momentum. During fitting, material properties are

used to calculate the following effects: energy loss and energy-loss straggling for charged particles

according to the Bethe Bloch formula (the code is based on the code ported from Geant3);

multiple scattering (according to Ref. [22] or using the Highland-Lynch-Dahl formula [23]), where

the full noise matrix is calculated; and soft Bremsstrahlung energy loss and energy-loss straggling

for e− and e+ (the code is based on the code ported from Geant3). The step sizes used for the

Runge-Kutta extrapolation should be as large as possible to avoid unnecessary computation,

while still being small enough to keep errors reasonably small. An adaptive step-size calculation

is done in the RKTrackRep, taking field inhomogeneities and curvature into account. To calculate

material effects correctly, extrapolation stops at material boundaries, and the step size is limited



6 FITTER IMPLEMENTATION 13

so that a maximal relative momentum loss in the material is not exceeded. RKTrackRep provides

different methods to find the POCA of the track to non-planar measurements. These are used

to construct virtual detector planes:

• extrapolate to point finds the POCA of the track to a given spacepoint. The virtual

detector plane contains the spacepoint and the POCA, and it is perpendicular to the track

direction. A weight matrix can be used as a metric, defining the space in which the POCA

will be calculated. By default, the inverted 3D covariance of a spacepoint measurement

is used as a metric, which gives correct fitting results also for spacepoints with arbitrary

covariance shapes. Again, the virtual detector plane contains the spacepoint and the

POCA, and it is perpendicular to the track direction in the space defined by the metric;

• extrapolate to line finds the POCA of the track to a given line or wire. The virtual detector

plane contains the line and the POCA. This routine is used for fitting wire measurements.

The intersection of the virtual detector plane and the measurement covariance gives the

covariance in the plane.

TrackRep combines track parameterization and track extrapolation code. The state can be

extrapolated through material and the magnetic field, to:

• detector planes;

• the POCA to points, lines, cylinders, and cones;

• or by a certain distance.

The state and covariance can be converted to/from a state defined in the global cartesian coor-

dinate system, (~x ~p), as detailed in Appendix A. The abstract base class AbsTrackRep defines

the interface, and Genfit2 ships with the RKTrackRep as a concrete implementation.

6 Fitter implementation

Track representations combine track-parameterization and track-extrapolation code. Fitting

algorithms use the measurements and track representations to calculate fit results, which are

stored in corresponding objects in the Track objects.

Four different track-fitting algorithms are currently implemented in Genfit2:



6 FITTER IMPLEMENTATION 14

• two smoothing Kalman filters, one which linearizes the transport around the state predic-

tions, and one which linearizes around a reference track;

• a deterministic annealing filter (DAF);

• a general broken lines (GBL) fitter.

Genfit2 provides the possibility to store several measurements of the same type in one

TrackPoint, mainly for using the DAF to assign weights to them. Wire measurements also

produce two MeasurementOnPlane objects, representing the passage of the particle on either side

of the wire. These tracks can also be fitted with the Kalman filters.

6.1 Kalman filter

The Kalman filter is a progressive algorithm that successively adds the information from each

detector hit to the estimated track parameters using a linear model of measurement and track

propagation. It uses a series of measurements observed over time, containing “noise” (random

variables) and other inaccuracies, and produced estimates of unknown variables; then iterates a

least square method in 3 steps: prediction, update, and smoothing.

Smoothing [26] is a standard technique: the track is fitted in forward and backward direc-

tion, where predictions and updates are saved in the FitterInfos at each TrackPoint. With

both of these, smoothed track states can be calculated. The weighted average between forward

and backward prediction gives the unbiased state, whereas the average between prediction in

one direction and update of the opposite direction results in the biased smoothed state. This

smoothed track gives more accurate states than either forward or backward updates alone.

The Kalman filter method introduced in Genfit2 is widely documented. We refer specifically

to Ref. [27], and here we only document the specifics of our implementation which deviates

in two ways. First, all matrix operations are performed in a way which explicitly maintains

the symmetry of the covariance matrices at each step in the calculation, thus minimizing the

number of operations and avoiding inconsistencies due to round-off errors. Second, an alternative

implementation is available which implements a square-root filter which additionally guarantees

that the covariance matrices remain positive-definite while improving the robustness against

round-off errors or vastly different matrix entries which can especially happen at the beggining

of the track fit, where individual track parameters only become known successively.



6 FITTER IMPLEMENTATION 15

The Kalman filter performs a succession of fits (called “updates”), moving from the innermost

hit along the series of hits identified by the track finders. Then the result of this first iteration

of fits in the outwards direction is used as the starting value for the next iteration in which the

fit proceeds in the backwards direction. In order to avoid biasing the inwards fit, the covariance

matrix of the result of the outwards fit is multiplied by a large factor and the off-diagonal entries

are discarded. At each TrackPoint the results from inward and outward fit are combined by

averaging the updated state of the outward fit and the prediction of the inward fit. This averaging

is called smoothing, but it should be kept in mind that also for the smoothed track, the track

parameters change discretely at each measurement. Averaging is thus an important operation

in Genfit2, and some care has gone into a numerically stable, efficient implementation. This

implementation is detailed in Appendix B.

Given the track parameters pi−1|i−1, Ci−1|i−1 at TrackPoint i−1 after the preceding update

step, we evaluate the prediction at plane i:

pi|i−1 = h(i−1)→i(pi−1|i−1), (12)

Ci|i−1 = F(i−1)→iCi−1|i−1F
T
(i−1)→i +N(i−1)→i, (13)

and the residual of the prediction:

ri|i−1 = mi −Hipi|i−1. (14)

Taking care to maintain the symmetry properties of the matrices, we can then write the updated

state and covariance as:

pi|i = pi|i−1 + Ci|i−1H
t
i (Vi +HiCi|i−1H

T
i )

−1ri|i−1, (15)

Ci|i = Ci|i−1 − Ci|i−1H
T
i (Vi +HiCi|i−1H

T
i )

−1HiCi|i−1. (16)

This summarizes the formalism of the Kalman filter. The only difference between the so-called

SimpleKalmanFitter and the ReferenceKalmanFitter lies in the evaluation of the transport and

noise matrices, as explained above. Nevertheless, we have implemented an alternative equivalent

formalism, using square-roots of covariance matrices to further improve numerical accuracy and

resilience. This implementation is described in Appendix C. Employing it allows significant

increases in the blow up factor applied to the covariance matrix on fitter returns.

During the first iteration, the reference track is constructed by extrapolating the seed state

from measurement to measurement. In the following iterations, the smoothed states of the



6 FITTER IMPLEMENTATION 16

previous iterations are taken as a new reference states. A χ2 value is calculated according to:

rk = pk|n − pk,r

χ2
k =

∑

i

(rk|n,i)
2

Vk|n,i,i
.

(17)

If the χ2 is below a certain value (default assigned value is 1), the corresponding reference state

will not be updated to save computing time.

The same convergence criteria as for the standard Kalman filter are used. Additionally, the

fit converges if the reference states do not change anymore, according to Eq. [17].

The choice of the linearization point can significantly affect the performance of the track fit.

In particular, if the first few hits lead to a large misestimate of the curvature, state predictions

may stay very far from the actual trajectories. Consequently, linearizing around them is not

optimal; material and magnetic field lookups are also not done at the proper places. It is

therefore common to linearize around reference states [24], which are calculated by extrapolating

the start parameters to all TrackPoint objects. At later iterations, the smoothed states from

the previous iterations are used as linearization points. However, if the change would be very

small, reference states are not updated, saving computing time. It is also possible to let the

fitter sort the measurements along the reference track, which can improve the fitting accuracy.

In addition to the convergence criteria detailed above, the fit is regarded as converged if none of

the reference states has been updated since the previous iteration.

6.2 Deterministic annealing filter

The deterministic annealing fitter (DAF) [27] is a powerful tool for the rejection of outlying

measurements. It is a Kalman filter that uses a weighting procedure between iterations based

on the measurement residuals to determine the proper weights. The user can select which of

Genfit2 two Kalman filter implementations should be used, and specify the annealing scheme.

The DAF is also perfectly suited to resolving the left-right ambiguities of wire measurements.

However, a problem can occur: the weights of the MeasurementOnPlane objects must be initial-

ized. The basic solution is to initialize both left and right measurements with a weight of 0.5.

Effectively, the wire positions are taken as measurements in the first iteration, and their covari-

ance is twice the mean of the individual covariances. So, all the wire positions have the same

covariance, no matter how far from the actual trajectory they are. This systematically false



7 VERTEX RECONSTRUCTION 17

estimate of the covariances biases the fit. Genfit2 implements a novel technique to initialize

the weights that improves the fitting efficiency: measurements with larger drift radii are assigned

smaller weights, leading to larger covariances since the wire position is expected to be farther

away from the trajectory. The mathematical espression used in the code is:

w =
1

2

(

1−
rdrift

rdrift, max

)2

, (18)

where w is the given weight, and rdrift is the distance of the measurement from trajectory.

In contrast, measurements with smaller drift radii, which are closer to the trajectory, get

larger weights. When the annealing scheme has been passed, convergence is checked: if the ab-

solute change of all weights is less than 10−3 (user configurable), the fit is regarded as converged.

Otherwise another iteration is done, until the fit is converged or a maximum number of iterations

is reached.

6.3 Generalized broken lines fitter

The generalized broken lines (GBL) method of track fitting [28, 29] was implemented especially

for the purpose of alignment with Millipede II [30]. It is mathematically equivalent to the Kalman

filter (with thin scatterers instead of continuous materials), and works with a large number of

parameters, but fits tracks in their entirety in one step. For alignment purposes, Genfit2 also

provides a set of interfaces for alignment parameters and derivatives which can be implemented

by the detector classes.

7 Vertex reconstruction

GFRave, an interface to the vertex-fitting framework RAVE [12], has been implemented in Gen-

fit2. RAVE is a detector-independent toolkit for vertex reconstruction, originally developed for

the CMS experiment [31]. GFRave takes full advantage of the Genfit2 material model and the

sophisticated algorithms of RAVE, allowing for precise and fast vertex reconstruction. GFRave

is part of the basf2 framework, where it is actively used. However, there is still no corresponding

implementation in PandaRoot, which is using for the time being other vertex and kinematic

fitters.



8 PERFORMANCE 18

8 Performance

8.1 Application of the Genfit2 standalone toolkit

Examples of what can be the result of a standalone Genfit2 simulation are given in Figs. 3-

4, which display the screenshots of an event reconstructed with Genfit2, performed by an

algorithm based on Teve: the reader can see that many features are available in the left-menu.

Figures 5, 6, 7 show tests performed with a demonstration macro provided together with the

Genfit2 toolkit (makeGeom.C). By default, this test macro creates a geometry which comprises

a 1 m3 cube filled with air, and 4 layers of cylindrical silicon material with a radius of 1.0 cm,

a length of 10 cm and a wall-thickness of 0.05 cm. The creation of measurements in the

test macros is independent on the geometry, but the geometry is basically provided to evaluate

material effects. One million events with a single pion in a solenoidal field of 2 T have been

simulated. Different pion momenta have been simulated: 50 MeV/c, 100 MeV/c, 400 MeV/c, 1

GeV/c. The information illustrated in the standalone Genfit2 event visualization is related to

the detector, hits, track with errors and track markers, the reference track, the result of the fit

in forward and backward direction.

8.2 Visualization of tracks in basf2

Genfit2 features a sophisticated 3D event display, which allows to visualize fitted tracks. De-

tector geometry, measurements, detector planes, reference tracks, forward and backward fits

(predictions and updates), smoothed tracks, and covariances of measurements and tracks can

be drawn. Tracks can be refitted with different algorithms and settings, and fit results can be

viewed instantly. Examples have been shown in Figs. 3-4.



8 PERFORMANCE 19

Figure 3: Example of event visualization using the standalone Genfit2 tool. Here a
pion of 400 MeV/c is generated in a solenoidal magnetic field B= 2 T.





8 PERFORMANCE 21

Entries  999996

 / ndf 2χ  140.7 / 158

Constant  2.908e+01± 2.371e+04 

Mean      0.00101±0.01475 − 

Sigma     0.001± 1.009 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999996

 / ndf 2χ  140.7 / 158

Constant  2.908e+01± 2.371e+04 

Mean      0.00101±0.01475 − 

Sigma     0.001± 1.009 

q/p pull
Entries  999996

 / ndf 2χ   1018 / 98
p0        2.014e+01± 1.008e+04 

p1        34.9±189.9 − 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000 Entries  999996

 / ndf 2χ   1018 / 98
p0        2.014e+01± 1.008e+04 

p1        34.9±189.9 − 

p­value

Entries  999996

 / ndf 2χ  173.7 / 162

Constant  2.886e+01± 2.352e+04 

Mean      0.001018± 0.002625 

Sigma     0.001± 1.018 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999996

 / ndf 2χ  173.7 / 162

Constant  2.886e+01± 2.352e+04 

Mean      0.001018± 0.002625 

Sigma     0.001± 1.018 

u’ pull
Entries  999996

 / ndf 2χ  139.1 / 159

Constant  2.900e+01± 2.362e+04 

Mean      0.0010133±0.0007699 − 

Sigma     0.001± 1.013 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999996

 / ndf 2χ  139.1 / 159

Constant  2.900e+01± 2.362e+04 

Mean      0.0010133±0.0007699 − 

Sigma     0.001± 1.013 

v’ pull

Entries  999996

 / ndf 2χ  136.9 / 145

Constant  2.918e+01± 2.384e+04 

Mean      0.001004±0.001134 − 

Sigma     0.001± 1.004 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  999996

 / ndf 2χ  136.9 / 145

Constant  2.918e+01± 2.384e+04 

Mean      0.001004±0.001134 − 

Sigma     0.001± 1.004 

u pull
Entries  999996

 / ndf 2χ  160.5 / 154

Constant  2.915e+01± 2.381e+04 

Mean      0.001005± 0.002136 

Sigma     0.001± 1.005 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999996

 / ndf 2χ  160.5 / 154

Constant  2.915e+01± 2.381e+04 

Mean      0.001005± 0.002136 

Sigma     0.001± 1.005 

v pull

Figure 5: Pull of the track parameters (u, v, u’, v’ and q/p), with the pion momentum =
1 GeV/c. Gaussian fits to these pull distributions are consistent with the expectation of
a normal distribution.



8 PERFORMANCE 22

Entries  999835

 / ndf 2χ  151.3 / 168

Constant  2.92e+01± 2.38e+04 

Mean      0.001006±0.005235 − 

Sigma     0.001± 1.005 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999835

 / ndf 2χ  151.3 / 168

Constant  2.92e+01± 2.38e+04 

Mean      0.001006±0.005235 − 

Sigma     0.001± 1.005 

q/p pull
Entries  999835

p0        2.028e+01± 1.033e+04 

p1        34.9±685.8 − 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000

16000 Entries  999835

p0        2.028e+01± 1.033e+04 

p1        34.9±685.8 − 

p­value

Entries  999835

 / ndf 2χ  476.5 / 183

Constant  2.680e+01± 2.159e+04 

Mean      0.001109± 0.001033 

Sigma     0.001± 1.108 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999835

 / ndf 2χ  476.5 / 183

Constant  2.680e+01± 2.159e+04 

Mean      0.001109± 0.001033 

Sigma     0.001± 1.108 

u’ pull
Entries  999835

 / ndf 2χ  239.7 / 171

Constant  2.795e+01± 2.265e+04 

Mean      0.00106± 0.00101 

Sigma     0.001± 1.056 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999835

 / ndf 2χ  239.7 / 171

Constant  2.795e+01± 2.265e+04 

Mean      0.00106± 0.00101 

Sigma     0.001± 1.056 

v’ pull

Entries  999835

 / ndf 2χ  126.3 / 149

Constant  2.870e+01± 2.342e+04 

Mean      0.0010220±0.0002628 − 

Sigma     0.001± 1.022 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  999835

 / ndf 2χ  126.3 / 149

Constant  2.870e+01± 2.342e+04 

Mean      0.0010220±0.0002628 − 

Sigma     0.001± 1.022 

u pull
Entries  999835

 / ndf 2χ    157 / 159

Constant  2.858e+01± 2.331e+04 

Mean      0.001027± 0.001784 

Sigma     0.001± 1.026 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  999835

 / ndf 2χ    157 / 159

Constant  2.858e+01± 2.331e+04 

Mean      0.001027± 0.001784 

Sigma     0.001± 1.026 

v pull

Figure 6: Pull of the track parameters (u, v, u’, v’ and q/p), with the pion momentum =
100 MeV/c. Gaussian fits to these pull distributions are consistent with the expectation
of a normal distribution.



8 PERFORMANCE 23

Entries  998018

 / ndf 2χ  202.4 / 169

Constant  2.94e+01± 2.39e+04 

Mean      0.001000±0.005278 − 

Sigma     0.0007± 0.9993 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  998018

 / ndf 2χ  202.4 / 169

Constant  2.94e+01± 2.39e+04 

Mean      0.001000±0.005278 − 

Sigma     0.0007± 0.9993 

q/p pull
Entries  998018

 / ndf 2χ   1972 / 98

p0        2.029e+01± 1.039e+04 

p1        34.9±851.9 − 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000

16000 Entries  998018

 / ndf 2χ   1972 / 98

p0        2.029e+01± 1.039e+04 

p1        34.9±851.9 − 

p­value

Entries  998018

 / ndf 2χ  359.9 / 179

Constant  2.825e+01± 2.281e+04 

Mean      0.001048± 0.001474 

Sigma     0.001± 1.047 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  998018

 / ndf 2χ  359.9 / 179

Constant  2.825e+01± 2.281e+04 

Mean      0.001048± 0.001474 

Sigma     0.001± 1.047 

u’ pull
Entries  998018

 / ndf 2χ  211.8 / 173

Constant  2.811e+01± 2.283e+04 

Mean      0.0010475± 0.0005364 

Sigma     0.001± 1.046 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  998018

 / ndf 2χ  211.8 / 173

Constant  2.811e+01± 2.283e+04 

Mean      0.0010475± 0.0005364 

Sigma     0.001± 1.046 

v’ pull

Entries  998018

 / ndf 2χ  157.9 / 166

Constant  2.861e+01± 2.331e+04 

Mean      0.0010259±0.0007483 − 

Sigma     0.001± 1.025 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000
Entries  998018

 / ndf 2χ  157.9 / 166

Constant  2.861e+01± 2.331e+04 

Mean      0.0010259±0.0007483 − 

Sigma     0.001± 1.025 

u pull
Entries  998018

 / ndf 2χ  203.6 / 168

Constant  2.863e+01± 2.325e+04 

Mean      0.001028± 0.002209 

Sigma     0.001± 1.027 

6− 4− 2− 0 2 4 6
0

5000

10000

15000

20000

25000 Entries  998018

 / ndf 2χ  203.6 / 168

Constant  2.863e+01± 2.325e+04 

Mean      0.001028± 0.002209 

Sigma     0.001± 1.027 

v pull

Figure 7: Pull of the track parameters (u, v, u’, v’ and q/p), with the pion momentum =
50 MeV/c. Gaussian fits to these pull distributions are consistent with the expectation of
a normal distribution.



8 PERFORMANCE 24

8.3 Performance of Genfit2 in basf2

Figure 8: Scheme of the track reconstruction design in basf2 [33].

Genfit2 performance depends on many parameters, such as computer hardware and com-

piler, number and types of measurements, momentum, geometry, magnetic field, number of

iterations, convergence settings, and so on. Nevertheless, a study has been conducted in both,

basf2 and PandaRoot, to give the reader an idea of the performance expected in high energy

physics using Genfit2. Figure 8 shows the track reconstruction design in Belle II. The Belle

II detector is structured with an internal vertex detector (VXD), which is made by 2 inner lay-

ers of silicon Pixel Detector (PXD) and 4 double-side strips of Silicon Detector (SVD); then a

Central Drift Chamber (CDC) is given for tracking purposes and particle identification. A time-

of-propagation (TOP) detector is also furnished, surrounded by an electro-magnetic calorimeter

(EM), while the outer detector is for µ and K0
L detections. A Combinatorial Kalman Filter

(CKF) was implemented at software level for track finding issues. Genfit2 takes care of track



8 PERFORMANCE 25

fitting in basf2: it acts in a way to bind together track segments and information of PXD (planar

hits), SVD (position along strips), and CDC (wire and drift time). The execution time of the

basf2 GenFitter module has been measured on a current 3.4 GHz office PC in single threaded

operation, an Intel machine with 4 cores. All code has been compiled with -O3 optimization

settings.

The module performs the fitting and a few more other features, like producing the Gen-

fit2 track from a TrackCand, storing the fitted track in an output array, creating relations etc.,

resulting in an overhead of a little less than 1 ms. Tracks are generated with a particle gun,

with θ = 100o and a momentum of 0.9 GeV/c in a constant magnetic field equal to 1.5 T. The

resulting tracks have 72± 2 TrackPoints. Genfit2 is configured to do from 3 to 10 iterations

with default convergence criteria. From the results shown in Tab. 1, one can see that the Kalman

Fitter with reference track needs less iterations to converge. Material lookup takes around 2.2

ms per iteration for the Kalman filter. The Reference Kalman fitter is also faster here, since

the reference states are not recalculated if they are close to the smoothed states of the previ-

ous iteration. This is also the reason why the Reference Kalman fitter can often finish after

2 iterations. The reference track is already so close to the smoothed track, that it would not

change in subsequent iterations. Table 1 shows that the calculation of the material effects takes

a large proportion of the computing time (of course, it strongly depends on the complexity of

the detector geometry under exam), and the Kalman fitter looks reasonably fast.

Table 1: Execution time of the GenFitter module in basf2.

Fitter no material effects with material effects n. iterations

Kalman 3.4 ms 10 ms 3
Reference Kalman 4.0 ms 8.2 ms 2
DAF 7.0 ms 11 ms 4

Examples of the good performance of Genfit2 in basf2 are shown in Figs. 9-10: in the

former a study with cosmics is performed, showing the good shape of the track reconstruction

software code; in the latter a study showing the efficiency of tracks, reconstructed with basf2, is

shown. The pull distributions of those parameters, defined as the ratio between the difference

of reconstructed and generated values, and the error of such parameter, is parameterized by a

double Gaussian function, and displayed in Fig. 9.



8 PERFORMANCE 26

(a) (b)

(c) (d)

Figure 9: Study of track reconstruction in Belle II, using cosmics collected during
February-March 2018: z0 (a) and d0 (b) resolution vs momentum. z0 and d0 are de-
fined as the projections of the z axis of the POCA, and that of the x-y plane of the
POCA, respectively. Fits to real data (cosmics, red plot) and to the MC simulated single
track events (blue plot) are displayed. Figures (c) and (d) show respectively the fits to
the pull distributions of those parameters [34]-[35].



8 PERFORMANCE 27

Figure 10: Efficiency of charged particles reconstructed with Genfit2 in basf2 [34], with
and without machine background simulation.

8.4 Performance of Genfit2 in PandaRoot

An interface has been built between Genfit2 and PandaRoot: GenfitTools. The basic structure

of GenfitTools is the same used to interface the previous Genfit package, but with a few

modifications due to the new classes introduced in Genfit2 (see Fig. 11). The new GenfitTools

structure has been created to allow both, Genfit and Genfit2, to be used as fitting tool, and

then compare their results.

GenfitTools includes several objects: adapters(2); recohits(2); recotasks(2); trackrep.

The objects adapters, recohits, recotasks refer to the Genfit interface to the PandaRoot

classes, and the objects adapters2, recohits2, recotasks2 refer to the Genfit2 interface to the

PandaRoot classes. PndTrack is the standard object for PandaRoot tracks, and it is converted

into a Genfit2 or Genfit Track by means of the adapters(2), which are able to deal with

changes in the Genfit2 code without changing additional packages.

In order to test the performance of the Genfit2 and the new GenfitTools package, a so-

called particle-gun generator has been used. Five particle hypoteses have been tested: electrons,

muons, pions, kaons and protons. A MC particle-gun generator is used to produce single par-



8 PERFORMANCE 28

Figure 11: Structure of the GenfitTools package, in the PandaRoot trunk 28747 [36].

ticle beam for each different particle hypotheses, with different pT values, running at the same

antiproton beam momentum5. For the example mentioned in this section a beam momentum

of 15 GeV/c was used. We tested particles emitted at a fixed polar angle (θ = 600). We also

checked the Genfit2 performance in PandaRoot by changing the beam momentum, to evaluate

the resolution and pull of the tracking parameters. The magnetic field map used in these tests is

a realistic one, as shown in Fig. 12(a). Since the PANDA detector is composed by two spectrom-

eters, one with a solenoidal field (on the left part of Fig. 12(a)) and another with dipole field (on

the right of Fig. 12(a)), the intermediate region is characterised by strong inhomogeneities which

has to be dealt by the extrapolation and fitting code. For comparison, the Belle II magnetic field

scheme is shown in Fig. 12(b). More details related to this study are published in Ref. [36].

The track representation used in the following tests is not RKTrackRep, because PandaRoot

currently uses GEANE [38]; therefore an estimate on how long it takes to reconstruct an event

with Genfit2 in PandaRoot framework is biased, and not comparable with the numbers mea-

sured for basf2.

Figure 13 shows the performance of tracking tools in 2 different PandaRoot trunk revisions:

the old tool (red squares) in comparison with the new Genfit2 tool (blue squares). The an-

5A change in the antiproton momentum beam changes the flux density of the dipole magnetic field in
the PANDA forward spectrometer.



9 CONCLUSION 29

tiproton beam momentum is set to 15 GeV/c. No significant differences are observed in the

2 different PandaRoot trunk revisions under investigation, for high pT ; however, for pT <0.35

GeV/c the Genfit2 performance is now better. In the PandaRoot trunk revision 28747 a switch

is provided to use both, Genfit2 and Genfit. Genfit2 has been introduced in the official

PandaRoot releases since 2017.

The result of our simulation shows a clear improvement for reconstruction of low momentum

tracks (see Fig. 13). A minimum transverse momentum threshold of 50 MeV/c is imposed, since

that is required for at least one hit in the Straw-Tube-Tracker (STT). Genfit2 is built in a way

to track low momentum tracks down 0 MeV/c.

We summarize in Fig. 14 a preliminary achievement of this work in PandaRoot: it shows the

pull distribution of the spatial tracking parameters d0 and z0, running the particle-gun beam at

pT = 1 GeV/c. As expected, the width of a Gaussian fit to the distribution is consistent with

1.0, and the mean with zero. Small variations are observed if we decrease the pT value, but they

are not significant, and the results confirm the stability of the fitter [40].

9 Conclusion

In summary, we have demonstrated that Genfit2 can successfully provide track-fitting tools

when the magnetic field is nearly homeogeneous (such as in Belle II) and when it is non-

homogeneous (such as in PANDA). Genfit2 has shown good track-fitting performance and

has been validated with MC samples. It has successfully been integrated into PandaRoot and

basf2. It easily adapts to different detector setups and geometries. With the new fitter imple-

mentation classes, compared to the former Genfit2, the performance of low momentum track

reconstrucion is improved. Tests have been performed changing particle hypotheses: electron,

muon, pion, kaon, and proton. The Runge-Kutta track representation works well in basf2, and is

available also in PandaRoot now. The newly available interfaces to Millepede II and RAVE are

also useful and easy to utilize, as it is the new event display feature included in the toolkit. Pre-

liminary results are promising, as reported in Ref. [35] (cosmics, and first data collected during

the early time of Phase 2 of Belle II for a total integrated luminosity equal to 5 pb−1). Gen-

fit2 is now used in several projects, including Belle II, COMET, PANDA, FOPI, SHIP, FOOT

and BGO-OD. We encourage scientists to make use of our generic tracking tool and participate

in our ongoing work to further improve and extend Genfit2.



9 CONCLUSION 30

(a)

(b)

Figure 12: (a) Magnetic field scheme in PANDA [36]: in the central part of the detector
it is constant and equal to 2T; in the dipole area the maximum bending power is 2 T·m.
(b) Magnetic field scheme in Belle II [37]: it is a solenoidal field of 1.5 T at the center of
the detector.



9 CONCLUSION 31

Figure 13: Efficiency versus the transverse momentum (pT ) of charged pions, emitted at
the polar angle value θ = 600, in PandaRoot. A comparison between the old tool (red
squares) and the new Genfit2 tool (blue points) is provided. The track fitting efficiency
is evaluated in a 3σ window around the reconstructed momentum [36].

(a) (b)

Figure 14: Generated values are subtracted from the reconstructed values of the variables
d0 and z0, and then divided by their errors. These plots have been obtained for pT =
400 MeV/c and they show the pull distributions [36] using Genfit2 in PandaRoot. The
width of the Gaussian fit to both distributions is consistent with being 1.0, as expected
for a correct pull distribution, and the mean is consistent with being zero.



10 BIBLIOGRAPHY 32

10 Bibliography

References

[1] J. Rauch and T. Schlüter, arXiV:1410.3698 [physics.ins-det].

[2] C. Höppner et al., NIM A 620, 518-525 (2010).

[3] M. Al-Turany et al., J. Phys.: Conf. Ser. 119, 032011 (2008).

[4] S. Spataro, J. Phys.: Conf. Ser. 396, 022048 (2012).

[5] W. Erni et al., arXiv:0903.3905 [hep-ex].

[6] T. Bilka et al., IEEE Trans. Nucl. Sci. Vol. 62 Issue 3, 1 (2015).

[7] https://www.belle2.org/

[8] J. Brodzicka et al., Progr. Theor. Exp. Phys. 04D001 (2012).

[9] V. Blobel, NIM A 566, 5 (2006).

[10] T. Abe et al., KEK Report 2010, arXiV:1011.0352 [physics.ins-det].

[11] T. Kuhr et al., arXiv:1809.04299 [physics.comp-ph]

[12] W. Waltenberger. IEEE Trans. Nucl. Sci., 58, 434-444 (2011).

[13] R. E. Kalman, Transcription of ASME - Jou. Basic Eng. 82, D35 (1960).

[14] M. Abramowitz et al., Handbook of mathematical functions with formulas, graphs, and math-

ematical tables, Dover, New York (1964).

[15] J. Myrheim et al., NIM 160, 43-48 (1979).

[16] L. Buggie et al., NIM 179, 365-381 (1981).

[17] E. Lund et al., JINST 4, P04001 (2009).

[18] E. Lund et al., JINST 4, P04016 (2009).

[19] GEANT - CERN Program Library Long Write-up, W5013 (1993).



REFERENCES 33

[20] R. Brun and F. Rademakers, AIHENP96 Workshop (Lausanne) 389, 81-86 (1996).

[21] GEANT4 Coll., GEANT 4 NIM A 506, 250-303 (203).

[22] A. Fontana et al., JPCS 117, 032018 (2008).

[23] V.L.Highland NIM 129, 479 (1975); G.R. Lynch and O.I. Dahl NIM B58, 6 (1991).

[24] R. Frühwirth et al., Data Analysis Techniques for High− Energy Physics. Cambridge

University Press (2000).

[25] B. D.O. Anderson and J. B. Moore, Optimal F iltering. Dover Publications (1979).

[26] R. Frühwirth, NIM A 262,444-450 (1987).

[27] R. Frühwirth and A. Strandlie, Track F itting with Ambiguities and Noise: A Study

of Elastic Tracking and Nonlinear F ilters. Computer Physics Communications, 197-214

(1999).

[28] V. Blobel and C. Kleinwort, NIM A 673, 107-110 (2012).

[29] V. Bloblel, NIM A 566 (2006) 14-17.

[30] V. Bloblel and C. Kleinwort, Proc. Conf. ASTPP (2002).

[31] CMS Collaboration, JINST, 0803:S08004 (2008).

[32] J. Rauch and T. Schlüter, JPCS 608, 012042 (2015).

[33] Scheme presented on behalf of the Belle II Coll. by S. Spataro at the CHEP conference,

Sophia, 2018.

[34] The Belle II Physics Book, arXiV:1808.10567 [hep-ex], pag.60-61.

[35] E. Prencipe, arXiV: 1808.04721 [hep-ex] (submitted to EPJ).

[36] E. Prencipe, JPCS 898, 042037 (2017).

[37] The Belle II Physics Book, arXiV:1808.10567 [hep-ex], pag.56.

[38] V. Innocente et al., GEANE: Average Tracking and Error Propagation Package, CERN,

Program Library W5013-E (1991)



REFERENCES 34

[39] D. N. Brown et al., The BaBar Track Fitting Algorithm, Proc. CHEP Conf. (2000).

[40] E. Prencipe, talk given at the Common Track Reconstruction Software Forum, Vienna

(2016).

[41] G. H. Golub, Num. Math. 7, 206 (1965).

[42] P. Businger et al., Num. Math. 7, 269-276 (1965).

[43] B.D.O. Anderson and J.B. Moore, Optimal filtering, Dover, 2005, pag. 5.



A COORDINATE SYSTEM 35

A Coordinate system

GENFIT2 uses three different sets of variables to characterize trajectories. Their definitions and

the conversions between them is discussed below.

We start by introducing the conventions for labelling planes. A plane in three-space is defined

by three vectors: we call its origin ~o (0,0,0), and define the two orthogonal unit vectors u, v,

giving the directions of the coordinate axes; the normal of the plane points in the direction of ~n

= ~u× ~v. ~v, ~u and ~n identify a left-handed system, respectively, as shown in Fig. 2, Sec. 2.

The three sets of variables are:

• 6D-coordinates. This is the common set used for user interfacing. It contains the cartesian

coordinates for the position and the momentum vector, labeled as:

(x, p).

These, together with an independently provided charge q, specify a helix uniquely.

• local coordinates. These are the five coordinates used in track fitting. They are given

relative to a plane with local orthogonal coordinates u and v. The coordinates are labeled

as:

(q/p, u′, v′, u, v)

Here q is the charge of the particle; p is its momentum; u′, v′ are the direction cosines

relative to the plane; u, v are the local coordinates on the plane.

These variables are supplemented by a variable σ = ±1, indicating whether the vertical

component of the track enters the supporting plane parallel or antiparallel to its normal

vector. Conversion to the 6D-coordinates is achieved as follows:













q/p
u′

v′

u
v













→

(

O+ uU+ vV
σN+u′U+v′V√

1+u′2+v′2
× p

)



A COORDINATE SYSTEM 36

• global coordinate. These are the seven coordinates used in track extrapolation: the position

x, the direction unit vector T and charge over momentum of the track, written as:

(x, T, q/p)

Conversion to the 6D-coordinates is performed by the mapping:

(x, T, q/p) → (x, pT).

These coordinates contain the complete helix information. Additionally, we can represent

a track by its helix parameters, which are labeled as:

(d0, φ, ω, z0, tanλ)

and which are defined following the conventions used at BaBar [39].

Jacobians are used for the various possible coordinate transformations. For the mapping between

two sets of vectors, x → y, we define the Jacobian matrix as:

J(x → y) = (
∂y

∂x
), (19)

where the y labels the rows and the x labels the columns. This, together with matrix multipli-

cation, gives the usual chain rule for the mapping x → y → z,

J(x → z) = J(y → z)J(x → y) (20)

and we obtain the usual error propagation formula:

Cy = J(x → y) · Cx · J(x → y)T (21)

which expresses the covariance matrix of the y in terms of the error matrix of the x together

with the Jacobian of the mapping between them.

J(local → global) =























0 0 0 Ux Vx

0 0 0 Uy Vy

0 0 0 Uz Vz

0 −u′σNx−u′v′Vx+(1+v′2)Ux

(1+u′2+v′2)3/2
−v′σNx−u′v′Ux+(1+u′2)Vx

(1+u′2+v′2)3/2
0 0

0
−u′σNy−u′v′Vy+(1+v′2)Uy

(1+u′2+v′2)3/2
−v′σNy−u′v′Uy+(1+u′2)Vy

(1+u′2+v′2)3/2
0 0

0 −u′σNz−u′v′Vz+(1+v′2)Uz

(1+u′2+v′2)3/2
−v′σNz−u′v′Uz+(1+u′2)Vz

(1+u′2+v′2)3/2
0 0























(22)



A COORDINATE SYSTEM 37

J(6D → global) =



























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
p2y+p2z

p3/2
−pxpy

p3/2
−pxpz

p3/2

0 0 0 −pxpy

p3/2
p2x+p2z
p3/2

−pypz

p3/2

0 0 0 −pxpz
p3/2

−pypz

p3/2
p2x+p2y

p3/2

0 0 0 − qpx
p3/2

− qpy

p3/2
− qpz

p3/2



























(23)

J(global → 6D) =

















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 p 0 0 −p2qTx

0 0 0 0 p 0 −p2qTy

0 0 0 0 0 p −p2qTz

















(24)

The important special cases, where the plane is orthogonal to the track, i.e. u′ = v′ = 0, delivers:

J(local → 6D) = J(global → 6D) · J(local → global) =

















0 0 0 Ux Vx

0 0 0 Uy Vy

0 0 0 Uz Vz

−p2qσNx Ux Vx 0 0
−p2qσNy Uy Vy 0 0
−p2qσNz Uz Vz 0 0

















(25)

In order to express efficiently the Jacobian for conversion from 6D to local coordinates, we express

the momentum vector in its components (pU , pV , pN ), where, e.g. pU ≡ p ·U, and σ = sgn(pN).

Then:

J(6D → local) =

















0 0 0 − q(pNNx+pUUx+pV Vx)
p3

− q(pNNy+pUUy+pV Vy

p3
− q(pNNz+pUUz+pV Vz

p3

0 0 0 σ(pNUx−pUNx)
p2N

σ(pNUy−pUNy

p2N

pNUz−pUNz

p2N

0 0 0 σ(pNVx−pvNx

p2N

σ(pNVy−pV Ny

p2N

pNVz−pV Nz

p2N

Ux Uy Uz 0 0 0
Vx Vy Vz 0 0 0

















(26)

J(global → local) =















0 0 0 0 0 0 1

0 0 0 (T·N)Ux−(T·N)Nx

(T·N)2
σ

(T·N)Uy−(T·N)Ny

(T·N)2
σ (T·N)Uz−(T·N)Nz

(T·N)2
σ 0

0 0 0 (T·N)Vx−(T·N)Nx

(T·N)2
σ

(T·N)Vy−(T·N)Ny

(T·N)2
σ (T·N)Vz−(T·N)Nz

(T·N)2
σ 0

Ux Uy Uz 0 0 0 0
Vx Vy Vz 0 0 0 0















(27)

Again, the special case where momentum is orthogonal to the plane in question (T · N = 1
p
p·N



B AVERAGING 38

= σ = ±1), gives:

J(6D → local) =















0 0 0 − q
p2
Nx − q

p2
Ny − q

p2
Nz

0 0 0 σUx
p

σ
Uy

p
σUz

p

0 0 0 σ Vx
p

σ
Vy

p
σ Vz

p

Ux Uy Uz 0 0 0
Vx Vy Vz 0 0 0















(28)

and:

J(global → local) =













0 0 0 0 0 0 1
0 0 0 σUx σUy σUz 0
0 0 0 σVx σVy σVz 0
Ux Uy Uz 0 00 0 0
Vx Vy Vz 0 00 0 0













(29)

As consistency check, one can try to calculate the transformation: local → global → local:

the Jacobian of this transformation is indeed equal to 0; the converse transformation, e.g.

global → local → global, has singular Jacobian. Its null space is spanned by: (0, 0, 0,Tx,Ty,Tz),

(Nx,Ny,Nz, 0, 0, 0, 0), which comes about because T is normalized (this brings about the first

direction of the null space) and because a point in local coordinates is constrained to a plane

(the second direction).

B Averaging

Given two measurements of the same n-dimensional quantity and their respective covariances,

(x1, C1) and (x2, C2), the two measurements can be combined to a least-likelihood estimate x̃ by

minimizing the χ2 of the combination, i.e.

χ2 = (x̃− x1)
TC−1

1 (x̃− x1) + (x̃− x2)
TC−1

2 (x̃− x2) ≡ min
x̃

. (30)

The solution is the well-known formula:

x̃ = (C−1
1 + C−1

2 )−1(C−1
1 x1 + C−1

2 x2), (31)

and the covariance of x̃ is by linear error propagation:

C̃ = (C−1
1 + C−1

2 )−1. (32)

We can simplify the evaluation of these textbook formulas significantly in the following manner,

applying a technique from Ref. [41]: covariance matrices are positive definite matrices. As such,



B AVERAGING 39

they can be written C = STS where S is some matrix which can be chosen to be upper triangular.

In the case where C is diagonal, the entries of C correspond to the squared errors σ2 and the

entries of S correspond to the errors σ. It is in this sense that S is referred to as a square

root of C. It is commonly evaluated by Cholesky decomposition. Since S is a upper triangular

matrix its inverse, and thus the inverse of C, can be evaluated directly by means of forward

substitution. Likewise products of the form S−1x can be evaluated by forward substitution

without first evaluating the inverse. Our goal is to replace the matrices in Eq. (31) and Eq.(32)

by their square roots and use those directly, thus operating with the errors instead of the squared

errors.

Starting with the inner part of (32), we can write:

C−1
1 + C−1

2 = S−1
1

T
S−1
1 + S−1

2
T
S−1
2 (33)

= (S−1
1

T
, S−1

2
T
)

(

S−1
1

S−1
2

)

, (34)

where on the second line we use block matrix notation, i.e. the matrix on the right is 2n × n.

As such, there is an 2n × 2n-dimensional orthogonal matrix Q, QQT = 1, which converts it to

an upper triagonal matrix, written explicitly:

(

S−1
1

S−1
2

)

= Q

(

R
0

)

, (35)

where R is n × n. This operation is the QR decomposition of the left-hand side, and we can

write:

C−1
1 + C−1

2 = (RT , 0)QQT

(

R
0

)

(36)

= RTR. (37)

Going back to Eq. (32), we have:

C̃ = R−1R−1T . (38)

In other words, we can obtain the square root of C̃ directly from the square roots of C1, C2 by

stacking them and performing a QR decomposition. This increases the numerical range in the

presence of vastly different errors, as we no longer operate on the squared errors but on the errors

themselves. Additionally, any matrix of the form in Eq. (38) is always invertible and positive

definite which prevents catastrophic conditions in subsequent numerical operations.



C PROOF OF SQUARE-ROOT KALMAN FILTER FORMULA 40

It is perhaps revealing to consider the similarity to the Pythagorean theorem which gives the

length of a vector (a, b)T as a2 + b2 = c2. The corresponding orthogonal transformations in this

case are the rotations which take the vector (a, b)T to (±
√
a2 + b2, 0)T . The computational gain

comes from the fact that the orthogonal operation disappears because the relevant quantities are

squares which always lead to factors QQT or QTQ (for the inverse matrices).

In order to evaluate x̃, we insert those into Eq. (31), and obtain:

x̃ = R−1R−1T (RT , 0)Q

(

S−1
1 x1

S−1
2 x2

)

(39)

= R−1Q̄

(

S−1
1 x1

S−1
2 x2

)

, (40)

where Q̄ refers to the upper n rows of Q. It never explicitly appears in the implementation,

instead the right-hand multiplication is evaluated simultaneously with the QR decomposition in

Eq. (35), using the algorithm of Ref. [42].

In practice this algorithm is not only preferable because of its numerical properties, we also

measured it to perform slightly faster than a naive implementation of Eqs. (31) and (32).

C Proof of Square-root Kalman filter formula

In a similar vein to Appendix B, we want to express the expressions for pi|i and the square root

of Ci|i = S̃T S̃ in Eq.(15) in terms of the n × n square roots of Ci|i−1 = STS and the m × m

measurement covariance Vi = RTR. Following Ref. [43], we want to show that we can find

corresponding expressions by QR decomposition of the matrix:
(

R 0
SHT S

)

= Q

(

U X
0 W

)

, (41)

where QQT = 1, U and W are upper triagonal matrices, and the block sizes on the right-hand

and left-hand sides are equal. For sake of brevity we write H = Hi, V = Vi, C = Ci|i−1.

We want to show that W = S̃ and XTU−1T = CHT (V +HCHT )−1. In order to do this, we

square both sides of (41), i.e. multiply each side with its transposed from the left. This gives:
(

V +HCHT HC
CHT C

)

=

(

UTU UTX
XTU XTX +W TW

)

. (42)

From this we can read off UTU = V +HCHT , UTX = HC. We can now find XTX by strategical

insertion of the m×m identity matrix followed by a rearrangement of parentheses,

XTX = XT · 1 ·X = XT (UU−1)(U−1TUT )X = (XTU)(UTU)−1(UTX). (43)



D LIST OF ACRONYMS 41

By identifying the corresponding entries in (42), we see that

XTX = CHT (V +HCHT )−1HC. (44)

Inserting this into the lower right block of (42) and comparing to (15), we find that:

W TW = C − CHT (V +HCHT )−1HC = S̃T S̃ (45)

and thus identify W = S̃, the desired square root of the updated covariance matrix. Finally, by

another strategic insertion of 1 we find:

XTU−1T ri = XTU(UTU)−1ri = CHT (V +HCHT )−1ri, (46)

i.e. the update of the state. Observe how the more familiar formulas are obtained by inserting

additional, cancelling terms in Eqs. (43) and (46). These cancellations are what degrade the

numerical behavior of the more commonly used formulas.

D List of acronyms

BASF = Belle Analysis Software Framework

CDC = Central Drift Chamber

CKF = Combined Kalman Filter

DAF = Deterministic Annealing Filter

EM = Electro-Magnetic calorimeter

FAIR = Facility for Antiproton and Ion Research

GENFIT = General Fitter

GSI = Gesellschaft für Schwerionenforschung (Helmholtz Centre for Heavy Ion Research)

GBL = Global Broken Line

POCA = Point of Closest Approach

PXD = Pixel Detector

RAVE = Reconstruction of vertices in Abstract Versatile Environments

SVD = Silicon Vertex Detector

STT = Straw-Tube Tracker

TOP = Time-Of-Propagation detector


