000873764 001__ 873764
000873764 005__ 20210130004512.0
000873764 0247_ $$2doi$$a10.3390/rs12030514
000873764 0247_ $$2Handle$$a2128/24319
000873764 0247_ $$2altmetric$$aaltmetric:75062841
000873764 0247_ $$2WOS$$aWOS:000515393800173
000873764 037__ $$aFZJ-2020-00978
000873764 041__ $$aEnglish
000873764 082__ $$a620
000873764 1001_ $$0P:(DE-HGF)0$$aFawcett$$b0$$eCorresponding author
000873764 245__ $$aMulti-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions
000873764 260__ $$aBasel$$bMDPI$$c2020
000873764 3367_ $$2DRIVER$$aarticle
000873764 3367_ $$2DataCite$$aOutput Types/Journal article
000873764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581415023_29860
000873764 3367_ $$2BibTeX$$aARTICLE
000873764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873764 3367_ $$00$$2EndNote$$aJournal Article
000873764 520__ $$aCompact multi-spectral sensors that can be mounted on lightweight drones are now widely available and applied within the geo- and environmental sciences. However; the spatial consistency and radiometric quality of data from such sensors is relatively poorly explored beyond the lab; in operational settings and against other sensors. This study explores the extent to which accurate hemispherical-conical reflectance factors (HCRF) and vegetation indices (specifically: normalised difference vegetation index (NDVI) and chlorophyll red-edge index (CHL)) can be derived from a low-cost multispectral drone-mounted sensor (Parrot Sequoia). The drone datasets were assessed using reference panels and a high quality 1 m resolution reference dataset collected near-simultaneously by an airborne imaging spectrometer (HyPlant). Relative errors relating to the radiometric calibration to HCRF values were in the 4 to 15% range whereas deviations assessed for a maize field case study were larger (5 to 28%). Drone-derived vegetation indices showed relatively good agreement for NDVI with both HyPlant and Sentinel 2 products (R2 = 0.91). The HCRF; NDVI and CHL products from the Sequoia showed bias for high and low reflective surfaces. The spatial consistency of the products was high with minimal view angle effects in visible bands. In summary; compact multi-spectral sensors such as the Parrot Sequoia show good potential for use in index-based vegetation monitoring studies across scales but care must be taken when assuming derived HCRF to represent the true optical properties of the imaged surface. 
000873764 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000873764 588__ $$aDataset connected to CrossRef
000873764 7001_ $$0P:(DE-HGF)0$$aPanigada$$b1
000873764 7001_ $$0P:(DE-HGF)0$$aTagliabue$$b2
000873764 7001_ $$0P:(DE-HGF)0$$aBoschetti$$b3
000873764 7001_ $$0P:(DE-HGF)0$$aCelesti$$b4
000873764 7001_ $$0P:(DE-HGF)0$$aEvdokimov$$b5
000873764 7001_ $$0P:(DE-HGF)0$$aBiriukova$$b6
000873764 7001_ $$0P:(DE-HGF)0$$aColombo$$b7
000873764 7001_ $$0P:(DE-HGF)0$$aMiglietta$$b8
000873764 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b9$$ufzj
000873764 7001_ $$0P:(DE-HGF)0$$aAnderson$$b10
000873764 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs12030514$$gVol. 12, no. 3, p. 514 -$$n3$$p514 -$$tRemote sensing$$v12$$x2072-4292$$y2020
000873764 8564_ $$uhttps://juser.fz-juelich.de/record/873764/files/remotesensing-12-00514.pdf$$yOpenAccess
000873764 8564_ $$uhttps://juser.fz-juelich.de/record/873764/files/remotesensing-12-00514.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873764 909CO $$ooai:juser.fz-juelich.de:873764$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b9$$kFZJ
000873764 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000873764 9141_ $$y2020
000873764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873764 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873764 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2017
000873764 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873764 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873764 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873764 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873764 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873764 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873764 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873764 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873764 920__ $$lyes
000873764 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000873764 980__ $$ajournal
000873764 980__ $$aVDB
000873764 980__ $$aUNRESTRICTED
000873764 980__ $$aI:(DE-Juel1)IBG-2-20101118
000873764 9801_ $$aFullTexts