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Abstract: Compact multi spectral sensors that can be mounted on lightweight drones are now
widely available and applied within the geo and environmental sciences. However; the spatial
consistency and radiometric quality of data from such sensors is relatively poorly explored beyond
the lab; in operational settings and against other sensors. This study explores the extent to which
accurate hemispherical conical reflectance factors (HCRF) and vegetation indices (specifically:
normalised difference vegetation index (NDVI) and chlorophyll red edge index (CHL)) can be
derived from a low cost multispectral drone mounted sensor (Parrot Sequoia). The drone datasets
were assessed using reference panels and a high quality 1 m resolution reference dataset collected
near simultaneously by an airborne imaging spectrometer (HyPlant). Relative errors relating to the
radiometric calibration to HCRF values were in the 4 to 15% range whereas deviations assessed for
a maize field case study were larger (5 to 28%). Drone derived vegetation indices showed relatively
good agreement for NDVI with both HyPlant and Sentinel 2 products (R2 = 0.91). The HCRF; NDVI
and CHL products from the Sequoia showed bias for high and low reflective surfaces. The spatial
consistency of the products was high with minimal view angle effects in visible bands. In summary;
compact multi spectral sensors such as the Parrot Sequoia show good potential for use in index
based vegetation monitoring studies across scales but care must be taken when assuming derived
HCRF to represent the true optical properties of the imaged surface.

Keywords: UAV; drone; multispectral; calibration; reflectance; NDVI; chlorophyll; vegetation;
maize; Parrot Sequoia
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1. Introduction

Spectral information and derived vegetation indices are at the core of a wide array of
methodologies for the monitoring of vegetation. How vegetation reflects light at different
wavelengths is indicative of its structure, biochemical composition as well as status and function in
terms of photosynthesis and carbon dioxide assimilation [1–3]. Deriving spectral information at fine
spatial and temporal resolutions was identified as being critical for relating processes measured at
local scale to coarser spatial resolution global measurements, for example, to bridge the scaling gap
between flux tower based eddy covariance measurements and satellite observations [4]. The
practicalities of sampling detailed ecosystem optical properties at fine scales previously relied on
elaborate and financially costly infrastructure such as in situ spectral measurement tramways [5] or
motorised flux tower mounted cameras [6].

Recently, the use of drones as proximal acquisition platforms has revolutionised the way in
which these finely resolved datasets can be collected [7–9]. Lightweight drones have the further
benefit of low financial cost, flexibility and enable deployment also in remote and harsh
environments [10,11]. In tandem with the development and production of compact and lightweight
turnkey multispectral sensors, there has been a surge in drone based multispectral data applications
during recent years which make use of the fine spatial resolution or frequent revisit capabilities [12–
14,15]. Popular sensor solutions are multi camera array (MCA) systems such as the Parrot Sequoia
(Parrot SA, France) and Micasense RedEdge (Micasense, US) which consist of individual cameras
with different band pass filters to record reflected light at specific narrow (10–40 nm) wavelength
intervals. The individual camera images are then co registered to provide a single image with
multiple spectral bands. Designed primarily for applications in precision agriculture, these sensors
exhibit a number of qualities which have also made them attractive to the scientific community,
primarily their low financial cost, simple integration into lightweight drone systems and
accompanying software options.

However, data from lightweight MCAs are susceptible to a considerable amount of geometric
and radiometric effects that require an extensive workflow of corrections such as dark current, lens
distortion and vignetting compensation, as detailed by [16]. These corrections are increasingly
handled by commercial, mostly black box software packages (e.g., Pix4D and Agisoft Metashape)
which generate fully mosaicked, orthorectified outputs and include the option of radiometrically
calibrating orthomosaics to provide surface reflectance and vegetation index (VI) maps.

The impact of correction and calibration methodologies as well as viewing angle effects for non
gimbaled acquisitions on the final surface reflectance and derivedVImaps can be considerable [17,18]
and is relatively poorly explored beyond the lab, in comparison against other optical remote sensing
instruments (e.g., onboard satellites or in airplanes) in operational settings. These effects have
potential implications for the spatial consistency and sensitivity of the products to the desired plant
trait to be monitored [19]. Yet, these uncertainties are not reported to the end user by the software
and the direct integration of products in further processing workflows without critical assessment
can potentially lead to bias in the results. Understanding the extent to which these uncertainties
influence outputs is important in a precision agriculture context where VIs serve as indicators of local
vegetation status. Ensuring that there is sufficient consistency between datasets is also crucial when
integrating drone based data with other remote sensing and in situ data sources, for improved
temporal monitoring [20–22]. For scaling studies, surface reflectance values should further be
traceable and comparable between sensors [23].

Due to the large interest from a diverse user base and the many potential applications of low
cost MCA systems, there is now a need for rigorous data assessments in an applied context. This can
determine whether the sensors are able to deliver physical quantities (e.g., surface reflectance) with
the required accuracy for scientific research and whether derived VIs are sufficiently consistent to
provide useful relative information as sought after for agricultural applications. To this end, we
planned a field campaign based on a section of heterogeneous maize field with multi sensor
acquisitions and accompanying spectroscopy field measurements and sampling of biophysical
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parameters. The presented study sought to provide a thorough assessment of MCA derived surface
reflectance and derived VI products and to answer the following research questions:

1. What is the performance of MCA sensors with regards to measuring surface reflectance?
a) What is the accuracy of MCA derived hemispherical conical reflectance factors?

(hemispherical conical reflectance factors (HCRF), following the terminology by
[24])

b) How is HCRF accuracy influenced by the type of calibration procedure followed?
c) How consistent are HCRF products spatially and over varying vegetation cover?

2. What is the performance of MCA sensors with regards to deriving vegetation indices?
a) How consistent are VI products spatially and over varying vegetation cover?
b) Are the MCA derived VIs comparable to VIs derived from similar bands of coarser

spatial resolution data captured close in time (HyPlant, Sentinel 2)?

Questions 1 a) and b) were addressed by a calibration–validation experiment using reference
panels imaged in flight. Both software (Pix4D) implemented proximal panel calibration and
empirical line models based on in flight imagery are compared in their ability to deliver accurate
HCRFs. For question 1 c), a spatially contiguous, pixel wise HCRF comparison over a heterogeneous
maize field (leaf area index (LAI) ranging from 0 to 4) was performed utilising a reference dataset
from a simultaneous airborne hyperspectral imager acquisition (HyPlant). Question 2 was answered
using field measured LAI values and vegetation indices derived from comparable acquisitions by
drone based, airborne (HyPlant) and spaceborne (Sentinel 2 multi spectral satellite) instruments over
the same study area.

2. Materials and Methods

The object of study, datasets and comparisons performed are presented in the following sections.
An overview of the study highlighting the different scales and the datasets compared is presented in
Figure 1.

Figure 1. Overview of the multisource datasets, including details on spatial resolution, and comparison

experiments performed. Arrows indicate which datasets are compared within this study.
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2.1. Study Site

The study was carried out over a maize field in the vicinity of Braccagni, a province of Grosseto,
Italy (N 42°49 7.06 , E 11°3 39.98 , 3 m a.s.l.) (Figure 2). This region has a temperate climate according
to the Köppen–Geiger classification (Csa) [25] and experiences dry and hot summers. The maize was
planted on clay soil in north south oriented rows and was drip irrigated. At the time of the study in
early July 2018, the majority of the crop was in the tasselling stage. The field showed considerable
heterogeneity and variability in plant density, likely due to soil characteristics and some irrigation
issues. The region of interest covered parts of two fields with the same sowing date with a spatial
extent of 3.4 hectares, limited by drone flying height restrictions and battery capacity.

Figure 2. The studied maize field in the province of Grosseto, Italy is depicted along with its location
(inset map). The flight lines and coverage of the drone (Sequoia, red) and airborne (HyPlant, blue)
datasets are also shown. Image data licensed by ESRI, © DigitalGlobe.

2.2. Image Data

Multi source remote sensing data were used for this study and are described in Table 1.
Drone image data were acquired using the Parrot Sequoia (Parrot, France) MCA mounted on a

3DR Solo quadcopter. The Sequoia sensor has four monochrome cameras with band pass filters to
record light in different wavelength regions (sensor response depicted in Figure 3, centre
wavelengths: 550, 660, 735 and 790 nm, bandwidths: 40, 40, 10 and 40 nm). The mount was custom
designed to fix the camera at a 3 degree angle to offset average in flight forward tilt. The flying
altitude for the drone acquisitions was 45 and 50 m above ground, resulting in a ground sampling
distance of 4.15 cm and 4.71 cm respectively. The flying speed was constant at 4 m/s and the camera
was triggered every 1.5 s by intervalometer, guaranteeing 85% forward image overlap. The
lawnmower pattern flight plan (Figure 2) was designed with a distance between flight lines resulting
in 80% lateral image overlap. Initial georeferencing of the images with a camera internal GPS was
refined using six ground control point markers clearly visible within the imagery and surveyed using
a high accuracy DGPS system (Topcon HiPer Pro, Japan).

Acquisition 1 (A1) (Table 1) denotes an acquisition for the validation of drone derived surface
reflectance factors for panels and natural targets.
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Acquisition 2 (A2) consisted of two subsequent flights (F2A and F2B) to cover the entire region
of interest (Figure 2), each with a duration of approximately 10 minutes and 10 minutes intermission
between flights.

Hyperspectral image data over the same area was acquired by the HyPlant airborne imaging
spectrometer [26]. The HyPlant instrument consists of two modules (the FLUO and DUAL module)
and was mounted on an aircraft flying at 680 m height resulting in a ground sampling distance of 1
m and a swath of 390 m. Data were geometrically and radiometrically corrected. The georeferencing
accuracy of the images is 1 pixel, i.e., 1 m. For this study, only data of the DUAL module, which
covers the spectral range of 380–2500 nm, was used. Top of canopy radiances and relative reflectance
was calculated using the laboratory calibration with the GalliGeo software package (SPECIM, Oulu,
Finland) and radiative transfer modelling using MODTRAN 5 (for details on the processing of
HyPlant imagery see [27]).

Both drone and airborne data were acquired during cloud free conditions over the study site,
though isolated cumulus clouds were passing in the vicinity.

The study site was imaged by Sentinel 2A (S2) during cloud free conditions at noon the
following day. The Level 2A atmospherically corrected surface reflectance data were downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). Due to the lower resolution of
the red edge bands, all bands used were resampled to 20 m pixel resolution. S2 bands 3, 4, 6 and 7
show the best correspondence with the Sequoia bands (Figure 3, centre wavelengths: 560, 665, 740
and 780 nm, bandwidths: 36, 31, 15 and 20 nm).

Table 1. Description of image datasets used within this study, including sensor, acquisition time,
ground sampling distance (spatial resolution) and spectral bandwidths (spectral resolution).

Dataset

Descriptor
Sensor

Acquisition

Time

Ground

Sampling

Distance

(GSD)

Bandwidth
Spectral

Range

Sequoia A1 Parrot Sequoia
6th July 2018
16:07 (UTC+2)

4.15 cm 10–40 nm 550–790 nm

Sequoia A2
(F2A + F2B)

Parrot Sequoia
7th July 2018
11:50 to 12:20
(UTC+2)

4.71 cm 10–40 nm 550–790 nm

HyPlant
HyPlant dual
channel module

7th July 2018
12:32 (UTC+2)

1 m 3–4 nm 380–2500 nm

S2
Sentinel 2A
MultiSpectral
Instrument

8th July 2018
12:10 (UTC+2)

20 m 18–45 nm 440–2200 nm
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Figure 3. Relative spectral responses of the four Parrot Sequoia cameras as well as the most closely
corresponding Sentinel 2A bands (bands 3, 4, 6 and 7), overlaid on a measured grass reflectance
spectrum.

2.3. Field Measurements

2.3.1. Field Spectral Measurements for Calibration and Validation

Concurrently with A1, five reference panels of varying reflectance as well as a dry bare soil and
a grass target weremeasured using anASD FieldSpec Pro spectrometer and calibrated toHCRF using
a 99% Spectralon® white panel as a reference. The brightest and darkest panel of 50 × 50 cm
dimensions and 2% and 44% nominal reflectance across bands were manufactured by MosaicMill
(Finland), consisting of a fabric applied to plywood. Three 40 × 60 cm panels of intermediate
reflectance (means of 8%, 21% and 39% across Sequoia bands) weremanufactured using RustOleum®
matte primer and paint on plywood. The target sizes were selected based on targets used in similar
studies [23].

For the validation of the HyPlant DUAL derived hyperspectral HCRF product, three tarps of
different reflectance (approx. 5%, 40% and 70% average reflectance in the 400 to 1000 nmwavelength
range) made of PVC coated canvas material (Kayospruce Ltd., UK) were measured using the ASD. It
should be noted that these tarps were imaged in a different flight line acquired approx. 20 minutes
prior to the one used further within this study, however, the atmospheric conditions are assumed to
remain similar and, therefore, the HCRF resulting from atmospheric correction are comparable.

2.3.2. Leaf Area Index Measurements

In the associated field campaign carried out on the same date as the overflights, LAI was
estimated using a LAI 2200 (LI COR, US) instrument. LAI 2200 measurements are a good proxy of
real LAI data in maize [28]. Measurements were taken within 20 10 × 10 m plots corresponding to
elementary sampling units (ESU) as suggested by the VALERI protocol [29] (Figure 4a). Each ESU
was selected to be approximately spatially homogenous in terms of LAI. The LAI measurement
protocol for the LAI 2200 device consisted of two Above canopy (A) and six Below canopy (B)
readings acquired along a transect that crossed maize crop rows (ABBBBBBA sequence, Figure 4b).
A 270° cap was used to restrict the azimuthal field of view, so that the operator was not in view and
the open portion of the sensor was pointed north west along the rows. The spatial subset analysed
for this study contains 20 ESUs with mean LAI values ranging from 0.85 to 3.83 m2/m2.

Figure 4. Position and values of LAI measurements available for the analysis (a), acquired along a
transect on 10 × 10 m plots (b).

2.4. Image Data Processing

2.4.1. Surface Reflectance from Drone Image Data
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Image processing from individual images for each of the four bands to multispectral HCRF
orthomosaics was performed in Pix4D (Pix4D, Switzerland). This included the geometric correction
and stitching of images, which employs photogrammetric algorithms as well as the radiometric
calibration to surface reflectance. The precise methodology employed in both workflows is not
disseminated due to the black box nature of the proprietary software, however, the radiometric
calibration procedure for Sequoia imagery has been shared in application notes by the manufacturer
[30], and is documented here.

For each spectral band (individual camera), the digital number (P) recorded within Sequoia
image data can be converted to a pseudo radiance in arbitrary units R homogeneous to W sr 1 m 1

according to Equation (1), where is the exposure time in seconds, is the ISO, f is the f number (f =
2.2) andA, B and C are camera specific calibration coefficients which model the non linear behaviour
of the CMOS sensor and are measured in production for each camera [31].

(1)

There are several options for deriving HCRF ( ) from the measured pseudo radiance R. One
commonly applied to drone based data is the use of a single reference target with a known reflectance
factor, imaged proximally before or after the acquisition. This is essentially a one point simplified
empirical line method (ELM) [32] with zero intercept where the band specific calibration coefficient
for converting R to is the ratio of known HCRF of the target ( ) and the spatially averaged R
over the target ( ) (Equation (2)). This simplified correction procedure is part of the default
workflow for reflectance map generations in photogrammetry softwares such as Pix4D and Agisoft
Metashape. Irradiance information which is recorded by the upward facing sunshine sensor is not
used here and the irradiance assumed constant throughout the acquisition.

(2)

White (100% reflective) reference targets are unsuited for use with many current drone based
sensors, as the integration times needed to achieve a satisfactory signal to noise ratio in the rest of
the scene lead to oversaturation over very bright surfaces [13,33]. The reference panel used in this
study was a Kodak grey card, an inexpensive reference panel common in photography, with an
approximate 20% reflectance across bands. In a previous study, the difference between the use of a
grey card reference and an assumed Lambertian Spectralon® panel of higher (40%) reflectance was
shown to be minimal within this calibration procedure [34].

An alternative to the proximal panel calibration is the use of the ELM using reference targets
imaged in flight. A linear model formed by ordinary least squares regression against multiple
reference targets or merely one dark and bright target is used to relate to . Adjacency effects, due
to diffuse scattering, have previously been observed influencing the reflectance of dark reference
panels and leading to erroneous negative values in shaded or dense canopy areas [35], which was
also found in a preliminary analysis for this study. Therefore, two alternate versions of the ELM
approach were tested using 1) one bright reference panel and the intercept set to zero, 2) one bright
reference panel with the intercept set to zero and the lowest value occurring within the vegetated
scene subtracted from the data, following recommendations by [35].

2.4.2. Vegetation Index Products

The four bands of the Sequoia sensor allow the calculation of several VIs which are indicative of
vegetation vigour and status. Two commonly employed indices were selected for this analysis, the
normalised difference vegetation index (NDVI) (Equation (3)) and the red edge chlorophyll index
(CHL) (Equation (4)). The NDVI has been used successfully as an indicator of LAI in crops [36], while
CHL is sensitive to canopy chlorophyll content [1].

 (3)
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2.4.3. Multi Scale HCRF and VI Intercomparison

In order to compare HCRF measurements between data sources, they must be resampled to
common spectral and spatial resolutions. To derive panel validation HCRF corresponding to the
Sequoia bands, the ASD measured HCRF values were convolved with the Sequoia relative sensor
spectral response functions (SRF) (Figure 3). In A1 at a ground sampling distance of 4.15 cm,
approximately 140 pixels per reference panel were resolved in the stitched orthomosaic. However,
due to concerns of adjacency effects/stray light influencing the values towards the panel edges, only
the mean of the central 16 pixels per panel were used and very small inter pixel differences verified
by analysing their standard deviation. If canvas targets are used, a larger number of pixels would be
required to account for variability due to surface unevenness.

For an intercomparison of Sequoia derivedHCRF values with HyPlant HCRF, the drone derived
HCRF orthomosaic was spatially resampled to 1 m spatial resolution. The hyperspectral reflectance
values were convolvedwith the Sequoia SRF, following the basic procedure described by [37] to yield
HCRF comparable with the Sequoia bands.

Relative offsets between the image datasets were reduced by updating the georeferencing of the
HyPlant image with a 2D polynomial in ArcMap (ESRI, US) using clearly identifiable tie points
between datasets and nearest neighbour resampling. After spectral resampling, Sequoia comparable
VIs were derived from the HyPlant dataset. The resampled HCRF and VI datasets were compared
pixel wise for the entire extent of A2. NDVI values over the sampled ESUs (see section 2.3.2) were
also compared, and a non linear regression of the NDVI mean values versus estimated LAI was
performed.

VIs were further compared to those derived from S2 data (utilising bands 4 and 7 for NDVI,
bands 6 and 7 for CHL). For this comparison, Sequoia and HyPlant data were spatially resampled to
20 m resolution and HyPlant bands spectrally resampled to the target S2 bands.

Deviations between datasets are assessed using the mean absolute deviation (MAD) and relative
error metrics. MAD was selected as an unambiguous metric that weighs all differences between the
datasets equally.

3. Results

3.1. HCRF Products

The HCRF products were derived from the Sequoia, HyPlant and S2 image data and
georeferenced and clipped to the extent of the drone dataset. The georeferencing root mean squared
error for the Sequoia A2 orthomosaic was 0.007 m. A visual comparison of false colour infrared
composites (Figure 5a), as well as representative spectra, are presented (Figure 5b). It is evident that
the drone data can resolve the row structure of the crop and small patches of bare ground. The
detailed information on the spatial heterogeneity of the field is partially lost at the comparatively
coarse resolution of S2. At this resolution, it was furthermore impossible to extract pure spectral
information on soil due to mixed pixels. The HyPlant dataset was able to well represent the
variability of vegetation cover while the reflectance spectra provide an additional wealth of
information, particularly by finely resolving the green peak (550 nm), the chlorophyll absorption in
the red wavelength regions (600–700 nm), as well as the sharp red edge increase in reflectance of
healthy vegetation (730 nm). These wavelength regions were all covered by the Sequoia and S2
sensors resolving the same features but at a much coarser spectral resolution.
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Figure 5. False colour infrared representations (a) and representative hemispherical conical
reflectance factors (HCRF) spectra (b) of the Sequoia (top), HyPlant (middle) and S2 (bottom) surface
reflectance products over the maize field study site (no pure soil pixel for S2). The subsets shown are
the extents analysed. Aerosol and water vapour bands of S2 were omitted.

3.1.1. Reference Target Validation of Drone Derived HCRF

The Sequoia derived HCRF values extracted from the mean of the central pixels of the reference
panels imaged in flight, as well as for a grass and soil target, were compared against in situ ASD
measured HCRF using MAD (Figure 6, Table 2). For the green band, the two brightest panels (>39%
reflectance) were saturated and therefore excluded from the analysis. This sensor inherent issue for
the visible bands has been verified by previous studies [35,38] and limits its applicability to surfaces
of intermediate brightness.

The standard deviations between the individual pixel values of the panels, assessed for the
single panel approach, were small (green: 0.0015, red: 0.0023, red edge: 0.0028, NIR: 0.0020).

Overall, errors per band are in the 2–4% reflectance range which equals 4–15% relative error
(Table 2). The largest errors are most apparent for the lower reflective panels in the NIR band, while
there is a general over estimation of reflectance values across all bands. The only exceptions are the
grass target which is underestimated in the red edge band as well as the brightest reference panels
imaged in the red band. The performance of the single panel calibration and the 0 intercept ELM is
similar, while the subtraction of the minimum value within the image leads to considerably smaller
errors for the green band, but the largest errors within the NIR band. Therefore, the error does not
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appear to be a simple offset but shows a wavelength dependent behaviour, as well as being related
to the magnitude of the target reflectance, which is clearly visible for the NIR band (Figure 6).

Figure 6. Sequoia multispectral image data derived HCRF of validation targets compared to ASD
measurements.

Table 2. Mean absolute deviation (MAD) of Sequoia derived HCRF values per band for the three
calibration approaches, estimated from the comparison with field measured reference panels and
surfaces.

Calibration Method MAD Green MAD Red MAD Red Edge MAD NIR

Single panel calibration 0.029 (13.63%*) 0.023 (11.11%*) 0.019 (7.53%*) 0.033 (11.95%*)
ELM with 0 intercept 0.02 (9.69%*) 0.027 (13.18%*) 0.023 (8.76%*) 0.027 (11.21%*)

ELM with modified 0 intercept 0.009 (4.19%*) 0.025 (12.29%*) 0.02 (8.87%*) 0.036 (14.75%*)

* relative error.

3.1.2. Spatial Comparison between Airborne and Drone Derived Surface Reflectance



Remote Sens. 2020, 12, 514 11 of 21

 

The spatial comparison of the HCRF values was performed for all three reflectance calibration
approaches by computingMAD between Sequoia and HyPlant HCRF (Table 3). The HCRFs from the
proximal panel approach are visualised as scatterplots per band (Figure 7), as well as difference
images between the HCRF values (Figure 8). The relative errors for HyPlant HCRF over the Sequoia
band ranges for the three validation tarps were also computed (Table 4).

It is apparent that for the visible bands, pixels which contain dense vegetation are over estimated
in terms of HCRF by the Sequoia by approximately 0.03while the higher reflective bare ground pixels
are underestimated by a similar amount (Figures 7 and 8). For more mixed pixels, the differences
compensate each other and the reflectance is much closer to the HyPlant derived values. As observed
for the panel validation experiment, the single panel calibration and 0 intercept ELM based on in
field panels result in similar deviations. The minimum subtraction method greatly increases
deviations for the infrared bands.

The difference images (Figure 8) do not exhibit strong surface cover independent spatial bias,
except for some spatial variation in the red edge and NIR bands. For the red edge, the area covered
by F2B (eastern field) is closer to the HyPlant HCRF (mean bias: 0.0135) while the area covered by
F2A (western field) is significantly lower (mean bias: 0.0417). This also explains the larger variation
of Sequoia red edge HCRF as opposed to HyPlant values in the scatterplot (Figure 7).

Possible view angle related effects are visible in the difference image of the NIR band (Figure 8)
as faint horizontal striping parallel to the drone flight path and perpendicular to the vertical striping
from variable vegetation cover.

Figure 7. Scatterplot comparisons of Sequoia and HyPlant based HCRF values for the four bands
analysed over the region of interest with an ordinary least squares regression line (bold), the R2 and
the MAD.
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Figure 8. Difference images (Sequoia A2 minus HyPlant) of the HCRF values of the four analysed
bands over the studied maize fields.

Table 3. MAD of Sequoia derived HCRF values per band for the three calibration approaches,
estimated from the comparison with HyPlant HCRF values.

Calibration Method MAD Green MAD Red MAD Red Edge MAD NIR

Single panel calibration 0.0163 (25.39%*) 0.0120 (26.10%*) 0.0307 (12.56%*) 0.0201 (5.61%*)
ELM, 0 intercept 0.0177 (27.58%*) 0.0117 (25.45%*) 0.0194 (7.94%*) 0.0360 (10.05%*)

ELM, modified 0 intercept 0.0118 (18.38%*) 0.0110 (23.93%*) 0.0539 (22.05%*) 0.0479 (13.37%*)

* relative error.

Table 4. Bias and relative errors of the HyPlant HCRF for the Sequoia band spectral ranges over three
differently reflective validation surfaces (tarps).

Validation surface Error Green Error Red Error Red Edge Error NIR

0.05 HCRF (Black) 0.0044 (9.61%*) 0.0045 (10.19%*) 0.0036 (7.95%*) 0.0038 (8.35%*)
0.4 HCRF (Grey) 0.0097 (2.20%*) 0.0071 (1.62%*) 0.0017 (0.39%*) 0.0001 (0.03%*)
0.7 HCRF (White) 0.0181 ( 2.53%*) 0.0155 ( 2.22%*) 0.0178 ( 2.58%*) 0.0152 ( 2.24%*)

* relative error.

3.2. Vegetation indices

VIs derived from Sequoia and HyPlant data, as well as S2 data were compared pixel wise across
the same extent as HCRF (Figures 9 and 10) and theMADs for different calibration methods reported
(Table 5). Finally, Histograms of Sequoia and HyPlant NDVI values and their model fits were
compared for 10 x 10 m ESUs of varying LAI (Figure 11).

While NDVI appears in relatively good agreement across the range for all datasets (Figures 9a
and 10a,c), it is evident from the scatterplots, histograms and LAImodels (Figure 11) that lower NDVI
values due to low vegetation fraction and higher soil contribution are overestimated by the Sequoia
data while high NDVI values stemming from purely vegetated pixels are slightly underestimated.

For the CHL index, there is a good linear relationship between the datasets but a very clear offset
which increases with higher values of CHL (Figure 9b, Figure 10b). For the Sequoia comparison with
S2 (Figure 10b), this is to be expected due to a slight difference in red edge band positions (Figure
A1) but does not explain the offset in comparison to HyPlant (Figure 9b). The impact of HyPlant band
spacing was tested using simulated data, the methodology and results of which can be found in the
appendix A. Mean estimated errors for all bands were very small across a variation of LAI and
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chlorophyll content values, the largest of which were found for the red edge band (0.00037 for LAI
0.5 to 10 m2/m2 and 0.00018 for chlorophyll from 0 to 100 g/cm2, Table A1).

Figure 9. Scatterplot comparisons of Sequoia and HyPlant based normalised difference vegetation
index (NDVI) (a) and chlorophyll index (CHL) (b) values for the region of interest with an ordinary
least squares regression line (bold) and the MAD.

Figure 10. Top: Scatterplots of NDVI (a) and CHL values (b) derived from S2 and Sequoia imagery
(resampled to 20 m spatial resolution). Bottom: Scatterplots of NDVI (c) and CHL values (d) derived
from S2 and HyPlant imagery (resampled to 20 m spatial resolution).
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Table 5. MAD of Sequoia derived vegetation index (VI) values (NDVI and CHL) for the three
calibration approaches, estimated from the comparison with HyPlant derived index values.

Calibration Method MADNDVI MAD CHL

Single panel calibration 0.0483 (6.20%*) 0.2429 (50.97%*)
ELM, 0 intercept 0.0468 (6.01%*) 0.2227 (46.73%*)

ELM, 0 intercept, minimum subtracted 0.0387 (4.97%*) 0.2069 (43.42%*)
* relative error.

Figure 11. Histograms of Sequoia (a–c) and HyPlant (d–f) NDVI values for three 10 × 10 m ESUs of
varying LAI. g) NDVI values averaged over ESU extents and the corresponding LAI value measured
in the field. Non linear model fits are provided for illustrative purposes.
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4. Discussion

4.1. HCRF Accuracy

The reference panel validation analysis of HCRF factors showed that Sequoia values tended to
overestimate panel reflectance by 4–15% (Figure 6, Table 1), and that this effect was most severe for
lower reflective panels. The magnitude of deviations from field measurements were comparable to
those of other vegetation focused studies using an identical or similar sensor [23,39]. Going further,
this study allowed an assessment of HCRF over variedmaize canopy cover at high spatial resolutions
(1 m) using the HyPlant dataset, where the same trend of overestimated HCRF in the visible bands
was observed for densely vegetated pixels (Figure 7). The HyPlant dataset itself was shown to be
sufficiently accurate to serve as reference for the purpose of this comparison (Table 4).

The reason for the overestimation of HCRF for the low reflective panels was likely due to the
influence of diffuse scattering and adjacency effects, as pointed out by [35]. Additional spatial
smoothing, also affecting the vegetated scene, is caused by projection and stitching which represents
an aggregation of pixel values from multiple images during orthomosaic generation. This reduces
detector noise but may also lead to bias inmeasuredHCRF. Compensation of this effect could involve
kernel based sharpening/deblurring [40] but restoring original pure spectral responses is not trivial
and there have been no studies investigating methods to be used at centimetre scale spatial
resolutions where contamination of multiple neighbouring pixels prevails. For panel based
comparisons and calibration, these forms of adjacency effects can be avoided by resolving a greater
amount of pure pixels per target which means flying at lower altitude or deploying larger targets
relative to the sensor GSD [39].

In addition to adjacency effects, increased temperatures during operation lead to a considerable
influence of dark current on measurements [41]. Insufficient compensation of this effect, as well as
the non linearity of the CMOS sensor during software internal calibration to pseudo radiance
(Equation (1)) are further sources of uncertainty [31,35] which may have led to the zero intercept and
modified ELM calibration not yielding overall improvements. Nevertheless, the strong linear
relationships observed for the visible bands in comparison with HyPlant HCRF (green R2: 0.82, red
R2: 0.88, Figure 7) highlight the potential for improvements of the ELM calibration procedure.

The largest deviations between the image datasets of Sequoia and HyPlant HCRF were found
over the red edge band (Figures 7 and 8) and an offset was also observed for the ASD measured grass
target in the field (Figure 6). As vegetation reflectance increases sharply within the red edge spectral
region, uncertainties within the SRF and the spectral resampling between HCRF products can be
expected to have a large impact on derived Sequoia HCRF. The approximated Sequoia SRF for the
red edge band derived from manufacturer information on filter transmission and CMOS sensitivity
may be insufficient. This would explainwhy no strong offsets were observed for the validation panels
with spectrally flatter reflectance responses across the measured wavelength range (Figure 6).

Overall, the observed errors are large in an imaging spectroscopy context, indicating that there
is still progress to be made in terms of calibration and the implementation of drone MCA data
processing and correction procedures within commercial software such as Agisoft Metashape and
Pix4D as well as the radiometric calibration reliant on manufacturer calibration coefficients (A, B and
C in Equation (1)) which result from high throughput processes [31]. This software implemented
workflow is not currently designed with the goal of delivering reproducible scientific data as there is
a lack of transparency considering some key processing steps due to commercially sensitive
information. The sensor itself is designed for out of the box operation in an agricultural context. In
order to guarantee robust HCRF from drones, full lab based characterisation of sensors and absolute
radiometric calibration methodology remains a necessity [42], which however comes at considerable
financial cost.

The applications of accurate HCRF data from drone platforms are only beginning to be explored.
Opportunities include the evaluation of satellite HCRF products and the performance of atmospheric
correction [23], commonly reliant on point based measurements of uniform surfaces [43] which
drone based measurements can extend to larger, more varied systems. Work towards accurate band
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specific HCRFs is further motivated by the ability to provide more information in the context of
vegetation biophysical parameter retrieval for the identification of best suited models e.g., by means
of Gaussian process regressions [44].

While this work showed the current limitations of accurate drone based HCRF retrieval using
compact MCA sensors, potential applications motivate the further characterisation of sensor
uncertainties and identification of optimal calibration procedures.

4.2. Multi Scale VI Consistency and Sensitivity

Comparisons with the spatially consistent HyPlant product could provide an assessment of
orthomosaic product consistency at unprecedented spatial resolution. Spatial variabilities related to
acquisition artefacts have been known to influence stitched orthomosaic drone data products [45],
but have previously only been evaluated with repeat measurements at different viewing or solar
angles [39,46]. Our findings based on near simultaneous reference data show that a high level of
consistency can be expected even from non gimbaled drone multispectral measurements which are
the default for low cost practical implementations, e.g., in precision agriculture. However, as
directional effects vary greatly depending on plant structural type [47], there is a further need for
assessing the impacts on drone derived VIs over different crops.

The analysis over field sampled 10 × 10 m ESU plots showed that uncertainties in calibration
and radiometry express themselves in a reduced sensitivity of Sequoia NDVI to LAI, assessed against
HyPlant NDVI values (Figure 11). This demonstrates that efforts towards reliable calibration are
important and can yield improvements even for studies only seeking to derive empirical
relationships between VIs and biophysical parameters or where relative VI information is used, such
as in guided fertiliser application [48].

Despite these observed biases, there was a strong correspondence between drone derived VIs
and the coarser grained HyPlant and S2 datasets (NDVI R2 = 0.91, CHL R2= 0.75 0.9, Figures 9 and
10), indicating that the drone VIs can reflect variations within maize canopy cover and can be
compared across scales. This highlights the potential for integrating drone based VI measurements
within or as an alternative to coarser resolution workflows either as validation or additional
measurements at desired time steps for monitoring purposes, such as identifying water limitation or
phenology of vegetation canopies [22,49]. This remains feasible and cost effective for study areas <5
ha [50]. However, for multi temporal monitoring, the stability of derived indices to slightly different
acquisition conditions (solar angles, atmospheric composition) is of similar importance to spatial
consistency andwarrants further investigation as particularly solar angle variations have been shown
to have a potentially large effect [39]. This was highlighted by results for the red edge band in this
study, where these temporal changes were visible even between the two drone acquisitions needed
to cover the study area (Figure 8c). The long duration of acquisitions during changing illumination
conditions represents a major shortcoming of drone based monitoring [51]. The results presented in
this study represent an ideal case based on almost concurrent acquisitions during constant
illumination conditions.

Current developments in drone sensor technology will aid in improving within product
consistency and comparability between drone and satellite measurements. Introducing band pass
filters for MCA sensors that closely match those of satellite sensors, such as the MAIA camera with
S2 equivalent bands [44] will reduce band position based offset effects. Efforts towards fully
gimbaled integrations of cameras and irradiance sensors even on lightweight drones may further
remove viewing angle and illumination effects and lead to improved product consistency.

5. Conclusions

This study focused on the assessment of accuracy and spatial consistency of drone based HCRF
acquired during ideal illumination conditions, as well as the accuracy of vegetation indices and their
comparability to products from other sensors which included a fine resolution HCRF comparison
with simulated spectral bands using the HyPlant DUAL hyperspectral imaging sensor.
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MCA derived individual band HCRF values exhibited bias when compared to ASD in situ
measurements, particularly over lower reflective surfaces with HCRF < 20% and none of the assessed
simple calibration procedures (proximal panel calibration, 0 intercept ELM andminimum subtracted
0 intercept ELM) performed consistently better over all spectral bands. HCRF outputs from simplified
calibration procedures should, therefore, be used with caution and independent assessments using
high quality HCRF measurements over large reference targets are encouraged for studies seeking to
identify optical properties from drones. Thorough lab based sensor calibration remains a
requirement for reliable physical measurements.

Conversely, the good level of spatial consistency of the drone mounted MCA derived products
and comparability of NDVI values to those of airborne and spaceborne sensors found in this study
mean that drone derived VIs show promise for vegetation monitoring at high spatial resolutions as
well as improving temporal resolutions of time series for dedicated study sites (e.g., flux tower
footprints), in addition to satellite datasets.

While this study mainly assessed HCRF and VIs from drone MCAs in context of coarser spatial
resolutions (1 and 20 m GSD), the ability of drone sensors to resolve individual canopies and even
leaves, separating them from background and shading effects, harbours great potential for mapping
biochemical plant traits at high resolutions. Once reliable solutions for operational calibration of
drone MCAHCRF have been found, the investigation of methods and uncertainties in linking HCRF
at the centimetre pixel scale to field measured optical properties of individual leaves and canopies is
anticipated to be at the forefront of drone based vegetation research.
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Appendix A: Simulations

In order to investigate the sensitivity of the Sequoia derivable indices NDVI and CHL to the
variables of interest as well as the effect of band position differences and its implications for the
comparability of Sequoia and S2 derived products in isolation of other influencing factors (e.g.,
differences due to atmospheric correction, Sequoia data calibration and viewing geometry), a range
of vegetation reflectance spectra were simulated using the PROSAIL model which couples the leaf
reflectance model PROSPECTwith the canopy geometry model SAIL [52]. All parameters besides the
LAI and Chlorophyll a+b content were fixed following [53] to values typical for maize, though they
do acknowledge that the model is not ideally suited for simulating the geometric properties of a row
crop.

The simulations were also used to evaluate the uncertainty due to the HyPlant band spacing
when resampled to Sequoia spectral bands.

For the first series, LAI was varied between values of 1 and 10 m²/ m² (10 steps) while
Chlorophyll a+b content was set to 50 g/cm². For the second series, LAI was kept constant at a value
of 3 while Chlorophyll a+b content was varied between 0 and 100 g/cm² (10 steps).
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Results revealed that for varying LAI, NDVI values derived from Sequoia bands should match
those from the equivalent S2 bands despite SRF differences. CHL values, on the other hand, were
found, via PROSAIL, to be not directly comparable due to slight band position differences (Figure
A1).

Mean estimated errors due to the HyPlant spectral sampling interval for all bands were very
small across a variation of LAI and chlorophyll content values (Table A1).

Figure A1. Simulated Sequoia and Sentinel 2A derived NDVI and CHL values for simulations of
varying LAI and Chlorophyll a + b content respectively.

Table A1. Errors due to spectral sampling interval of the HyPlant bands spectrally resampled to
simulate Sequoia data, assessed per band for a PROSAIL simulated series of leaf area index (LAI) and
chlorophyll content of a maize like canopy.

MAD between Sequoia Band Resampled Values

and HyPlant to Sequoia Band Resampled Values.

LAI Series

(0.5–10)

Chlorophyll Content

Series (0–100 g/cm2)

Green 0.0002 0.0001
Red 5.2631 × 10 6 1.6583 × 10 6

Red edge 0.0001 6.4832 × 10 5

NIR 5.7975 × 10 5 2.0239 × 10 5
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