000873774 001__ 873774
000873774 005__ 20210130004513.0
000873774 0247_ $$2doi$$a10.18154/RWTH-2019-11430
000873774 0247_ $$2Handle$$a2128/24352
000873774 037__ $$aFZJ-2020-00988
000873774 041__ $$aen
000873774 0881_ $$aHBZ: HT020314384
000873774 088__ $$2Other$$aHBZ: HT020314384
000873774 1001_ $$0P:(DE-Juel1)168561$$aGenster, Christoph$$b0$$eCorresponding author
000873774 245__ $$aSoft- und Hardwareentwicklung für die Flüssigszintillator-Detektoren der nächsten Generation JUNO und OSIRISSoftware and hardware development for the next-generation liquid scintillator detectors JUNO and OSIRIS$$f2016-01-01 - 2019-06-30
000873774 260__ $$aAachen$$bRWTH Aachen University$$c2019
000873774 300__ $$a202 p
000873774 3367_ $$2DataCite$$aOutput Types/Dissertation
000873774 3367_ $$2ORCID$$aDISSERTATION
000873774 3367_ $$2BibTeX$$aPHDTHESIS
000873774 3367_ $$02$$2EndNote$$aThesis
000873774 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000873774 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1582041727_32436
000873774 3367_ $$2DRIVER$$adoctoralThesis
000873774 502__ $$aDissertation, RWTH Aachen, 2019$$bDissertation$$cRWTH Aachen$$d2019$$o2020-11-29
000873774 520__ $$aLarge liquid scintillator~(LS) detectors are acknowledged instruments in the field of neutrino physics. Based on various successful experiments, reporting the currently best limits on several parameters of neutrino flavor oscillations, a new generation of detectors with several tens of kilotons of LS are under consideration. The Jiangmen Underground Neutrino Observatory~(JUNO) is a 20 kiloton LS detector, that is fully funded and under construction in China. Its main goal is the determination of the neutrino mass ordering~(MO) through a precision measurement of the reactor electron anti-neutrino spectrum. The first part of this thesis discusses the underlying theory of neutrino flavor oscillations, the JUNO detector design and how neutrinos of various sources can be detected with this instrument. The focus is laid on a correlated background for the inverse beta decay~(IBD) measurement of reactor anti-neutrinos, which stems from cosmic muons. When they traverse the detector, the muons can create unstable radioisotopes, which decay after a short time in a (beta + n) channel. In order to identify and reject this background, it is paramount to know the track of the muon precisely. For this purpose, a novel muon reconstruction algorithm is developed and tested in this work. It is based on the geometric model of the intersection of the first-light front with the PMT array. The track parameters are optimized in a likelihood fit based on probability density functions produced with a detailed detector simulation. In addition, a simulation of the full readout electronics is performed to yield the best estimate of the performance on real data. Excluding the edge of the CD, the muon track's distance from the detector center DeltaD can be determined with an uncertainty of 5 cm and its direction with 0.3°. The impact on the detector's exposure by a muon veto based on this reconstruction was also studied. Compared to a perfect knowledge of each muon track, the developed method only creates an additional 4 % of loss in exposure. In the second part, a pre-detector for JUNO is investigated. OSIRIS is a standalone, 20 ton LS detector, that will be used to monitor the radiopurity of the cleaned LS before it is filled into JUNO.In the scope of this work, a detailed detector simulation based on C++11 and Geant4 is developed. It is then used to determine the sensitivity of the detector to its main physics goal: the identification of Bi-Po coincidences from the decay chains of U-238 and Th-232 in the LS. Furthermore, a calibration campaign for OSIRIS is studied. Under consideration of the available hardware, the decision is made to utilize an automated calibration unit~(ACU) from the Daya Bay collaboration. The energy range of 0.5 - 3 MeV will be calibrated by exposing the detector simultaneously to Cs-137, Zn-65, and Co-60 in a single capsule. With different vertical positions on a fixed radial distance r = 120 cm from the detector's center, its non-uniformity can be properly sampled. Timing calibration of the PMTs with an accuracy of~0.1 ns is realized with a 430 nm LED, that can be deployed along the same vertical axis.
000873774 536__ $$0G:(DE-HGF)POF3-612$$a612 - Cosmic Matter in the Laboratory (POF3-612)$$cPOF3-612$$fPOF III$$x0
000873774 588__ $$aDataset connected to DataCite
000873774 773__ $$a10.18154/RWTH-2019-11430
000873774 8564_ $$uhttp://publications.rwth-aachen.de/record/774258
000873774 8564_ $$uhttps://juser.fz-juelich.de/record/873774/files/774258.pdf$$yOpenAccess
000873774 8564_ $$uhttps://juser.fz-juelich.de/record/873774/files/774258.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873774 909CO $$ooai:juser.fz-juelich.de:873774$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168561$$aForschungszentrum Jülich$$b0$$kFZJ
000873774 9131_ $$0G:(DE-HGF)POF3-612$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vCosmic Matter in the Laboratory$$x0
000873774 9141_ $$y2020
000873774 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873774 920__ $$lyes
000873774 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
000873774 980__ $$aphd
000873774 980__ $$aVDB
000873774 980__ $$aUNRESTRICTED
000873774 980__ $$areport
000873774 980__ $$aI:(DE-Juel1)IKP-2-20111104
000873774 9801_ $$aFullTexts