001     873781
005     20230426083218.0
024 7 _ |a 10.1103/PhysRevB.101.085111
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/24326
|2 Handle
024 7 _ |a WOS:000512773800002
|2 WOS
024 7 _ |a altmetric:72017416
|2 altmetric
037 _ _ |a FZJ-2020-00995
082 _ _ |a 530
100 1 _ |a Ghanem, Khaldoon
|0 P:(DE-Juel1)168540
|b 0
245 _ _ |a Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581425233_17628
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The average spectrum method is a promising approach for the analytic continuation of imaginary time or frequency data to the real axis. It determines the analytic continuation of noisy data from a functional average over all admissible spectral functions, weighted by how well they fit the data. Its main advantage is the apparent lack of adjustable parameters and smoothness constraints, using instead the information on the statistical noise in the data. Its main disadvantage is the enormous computational cost of performing the functional integral. Here we introduce an efficient implementation, based on the singular value decomposition of the integral kernel, eliminating this problem. It allows us to analyze the behavior of the average spectrum method in detail. We find that the discretization of the real-frequency grid, on which the spectral function is represented, biases the results. The distribution of the grid points plays the role of a default model while the number of grid points acts as a regularization parameter. We give a quantitative explanation for this behavior, point out the crucial role of the default model and provide a practical method for choosing it, making the average spectrum method a reliable and efficient technique for analytic continuation.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
542 _ _ |i 2020-02-10
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Koch, Erik
|0 P:(DE-Juel1)130763
|b 1
|e Corresponding author
773 1 8 |a 10.1103/physrevb.101.085111
|b American Physical Society (APS)
|d 2020-02-10
|n 8
|p 085111
|3 journal-article
|2 Crossref
|t Physical Review B
|v 101
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.101.085111
|g Vol. 101, no. 8, p. 085111
|0 PERI:(DE-600)2844160-6
|n 8
|p 085111
|t Physical review / B
|v 101
|y 2020
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/873781/files/PhysRevB.101.085111-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/873781/files/stochs.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/873781/files/stochs.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/873781/files/PhysRevB.101.085111-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873781
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168540
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130763
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1016/0370-1573(95)00074-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.060509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.182003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1137/1.9780898718836
|1 P. C. Hansen
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |1 M. Jarrell
|y 2012
|2 Crossref
|t Correlated Electrons: From Models to Materials
|o M. Jarrell Correlated Electrons: From Models to Materials 2012
999 C 5 |1 S. R. White
|y 1991
|2 Crossref
|t Computer Simulation Studies in Condensed Matter Physics III
|o S. R. White Computer Simulation Studies in Condensed Matter Physics III 1991
999 C 5 |a 10.1103/PhysRevB.57.10287
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.035115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.174429
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.81.056701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.94.063308
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.075145
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.165125
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF00143942
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. L. Lawson
|y 1974
|2 Crossref
|t Solving Least Squares Problems
|o C. L. Lawson Solving Least Squares Problems 1974
999 C 5 |a 10.1088/1361-6420/aa8d93
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Waldvogel
|y 2010
|2 Crossref
|t Approximation and Computation
|o J. Waldvogel Approximation and Computation 2010
999 C 5 |1 L. S. Schulman
|y 2005
|2 Crossref
|t Techniques and Applications of Path Integration
|o L. S. Schulman Techniques and Applications of Path Integration 2005
999 C 5 |a 10.1007/978-94-009-0107-0
|1 J. Skilling
|2 Crossref
|9 -- missing cx lookup --
|y 1996
999 C 5 |a 10.1063/1.1703636
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. S. Sivia
|y 2006
|2 Crossref
|t Data Analysis: A Bayesian Tutorial
|o C. S. Sivia Data Analysis: A Bayesian Tutorial 2006


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21