Hauptseite > Publikationsdatenbank > Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid > print |
001 | 873781 | ||
005 | 20230426083218.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.101.085111 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/24326 |2 Handle |
024 | 7 | _ | |a WOS:000512773800002 |2 WOS |
024 | 7 | _ | |a altmetric:72017416 |2 altmetric |
037 | _ | _ | |a FZJ-2020-00995 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ghanem, Khaldoon |0 P:(DE-Juel1)168540 |b 0 |
245 | _ | _ | |a Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1581425233_17628 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The average spectrum method is a promising approach for the analytic continuation of imaginary time or frequency data to the real axis. It determines the analytic continuation of noisy data from a functional average over all admissible spectral functions, weighted by how well they fit the data. Its main advantage is the apparent lack of adjustable parameters and smoothness constraints, using instead the information on the statistical noise in the data. Its main disadvantage is the enormous computational cost of performing the functional integral. Here we introduce an efficient implementation, based on the singular value decomposition of the integral kernel, eliminating this problem. It allows us to analyze the behavior of the average spectrum method in detail. We find that the discretization of the real-frequency grid, on which the spectral function is represented, biases the results. The distribution of the grid points plays the role of a default model while the number of grid points acts as a regularization parameter. We give a quantitative explanation for this behavior, point out the crucial role of the default model and provide a practical method for choosing it, making the average spectrum method a reliable and efficient technique for analytic continuation. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
542 | _ | _ | |i 2020-02-10 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Koch, Erik |0 P:(DE-Juel1)130763 |b 1 |e Corresponding author |
773 | 1 | 8 | |a 10.1103/physrevb.101.085111 |b American Physical Society (APS) |d 2020-02-10 |n 8 |p 085111 |3 journal-article |2 Crossref |t Physical Review B |v 101 |y 2020 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.101.085111 |g Vol. 101, no. 8, p. 085111 |0 PERI:(DE-600)2844160-6 |n 8 |p 085111 |t Physical review / B |v 101 |y 2020 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/873781/files/PhysRevB.101.085111-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/873781/files/stochs.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/873781/files/stochs.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/873781/files/PhysRevB.101.085111-1.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:873781 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168540 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130763 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1016/0370-1573(95)00074-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.060509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.182003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1137/1.9780898718836 |1 P. C. Hansen |2 Crossref |9 -- missing cx lookup -- |y 2010 |
999 | C | 5 | |1 M. Jarrell |y 2012 |2 Crossref |t Correlated Electrons: From Models to Materials |o M. Jarrell Correlated Electrons: From Models to Materials 2012 |
999 | C | 5 | |1 S. R. White |y 1991 |2 Crossref |t Computer Simulation Studies in Condensed Matter Physics III |o S. R. White Computer Simulation Studies in Condensed Matter Physics III 1991 |
999 | C | 5 | |a 10.1103/PhysRevB.57.10287 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.035115 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.78.174429 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.81.056701 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.94.063308 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.84.075145 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.82.165125 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF00143942 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 C. L. Lawson |y 1974 |2 Crossref |t Solving Least Squares Problems |o C. L. Lawson Solving Least Squares Problems 1974 |
999 | C | 5 | |a 10.1088/1361-6420/aa8d93 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. Waldvogel |y 2010 |2 Crossref |t Approximation and Computation |o J. Waldvogel Approximation and Computation 2010 |
999 | C | 5 | |1 L. S. Schulman |y 2005 |2 Crossref |t Techniques and Applications of Path Integration |o L. S. Schulman Techniques and Applications of Path Integration 2005 |
999 | C | 5 | |a 10.1007/978-94-009-0107-0 |1 J. Skilling |2 Crossref |9 -- missing cx lookup -- |y 1996 |
999 | C | 5 | |a 10.1063/1.1703636 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 C. S. Sivia |y 2006 |2 Crossref |t Data Analysis: A Bayesian Tutorial |o C. S. Sivia Data Analysis: A Bayesian Tutorial 2006 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|