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The average spectrum method is a promising approach for the analytic continuation of imaginary
time or frequency data to the real axis. It determines the analytic continuation of noisy data
from a functional average over all admissible spectral functions, weighted by how well they fit the
data. Its main advantage is the apparent lack of adjustable parameters and smoothness constraints,
using instead the information on the statistical noise in the data. Its main disadvantage is the
enormous computational cost of performing the functional integral. Here we introduce an efficient
implementation, based on the singular value decomposition of the integral kernel, eliminating this
problem. It allows us to analyze the behavior of the average spectrum method in detail. We find
that the discretization of the real-frequency grid, on which the spectral function is represented,
biases the results. The distribution of the grid points plays the role of a default model while the
number of grid points acts as a regularization parameter. We give a quantitative explanation for this
behavior, point out the crucial role of the default model and provide a practical method for choosing
it, making the average spectrum method a reliable and efficient technique for analytic continuation.

I. INTRODUCTION

Strongly interacting quantum many-particle problems
require non-perturbative solvers. Quantum Monte Carlo
(QMC) approaches provide, in the absence of a sign prob-
lem, numerically exact results and are therefore widely
used. Their key drawback is that they work well only for
imaginary time or frequency. To make contact with ex-
periment these data have to be analytically continued to
obtain the spectral function A(ω) on the real-frequency
axis. This requires solving an integral equation, present-
ing an ill-posed inverse problem. The standard approach
to this problem for strongly correlated electron systems
is the Maximum Entropy method (MaxEnt) described in
[1], which is, with some variations, also used in Eliash-
berg theory [2] as well as in lattice QCD simulations [3].
The ill-posedness of the inverse problem implies that

the spectral function A(ω) giving the best fit to the
imaginary-axis data in a least-squares sense, while eas-
ily determined, is completely useless: It is dominated
by rapid oscillations of diverging amplitude, arising from
fitting the inevitable statistical noise in the QMC data.
The standard approach for overcoming this problem is to
impose smoothness on the solution, i.e., to regularize [4].
The Maximum Entropy method provides a regularization
based on Bayesian arguments. It penalizes deviations of
the spectral function from a default model, measured by
the relative entropy of the two functions. While the non-
linearity of the entropy function makes optimization more
difficult, it has the important advantage of ensuring the
non-negativity of the spectral function. The method pro-
vides good results and is so efficient that it is the de facto
standard for analytic continuation problems. Still there
remains the problem of choosing an appropriate default
model and regularization parameter, the latter giving rise
to a number of different flavors of MaxEnt [5].

An alternative approach, the Average Spectrum
Method (ASM), that promises to avoid these ambigui-
ties was proposed by White [6] and, independently, in
Refs. [7, 8]. The basic idea is of striking elegance: The
spectral function is obtained as the average of all phys-
ically admissible spectral functions weighted with how
well they fit the data given on the imaginary axis. Due
to the ill-posedness of the inverse problem there are many
spectral functions that differ drastically but fit the data
equally well. Taking the average is thus expected to
smooth out features that are not supported by the data,
providing a regularization without the need for explicit
parameters. The practical application of this conceptu-
ally appealing approach has, however, so far suffered from
the computational cost of its implementations [6–10].

Here we introduce the blocked modes sampling tech-
nique, which overcomes the main limitation of the aver-
age spectrum method: The commonly used recipe is to
update the sampled spectral function at several points
simultaneously, keeping a number of moments of A(ω)
fixed [7, 8]. Our more systematic approach introduces
global moves, updating not individual components of
A(ω), but changing it at all frequencies at once by an
amount proportional to a singular mode of the kernel.
This is very efficient when the global moves are not con-
strained too much by the non-negativity of A(ω). When
the constraint limits these moves significantly it becomes
more efficient to partition the frequency axis and perform
global moves on the individual frequency blocks.

Blocked modes sampling makes the average spectrum
method fast enough that we can systematically investi-
gate how well it performs the analytic continuation. We
find that the results depend on the way the real-frequency
axis is discretized: The density function used for picking
grid points acts as a default model, i.e., determines the
result in the absence of data, while the number of grid
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points acts as a regularization parameter. That the ASM
includes, via the parametrization of the real axis, a de-
fault model has already been noticed in [10, 11], while
in [12] it was observed that the results of the ASM are
becoming more biased with increasing number of grid
points. We find an explanation for this, which provides
us with ways to undo the effect of a specific grid. More-
over, we develop a method for judging the reliability of
the results of the average spectrum method, making it a
reliable approach to analytic continuation.

II. AVERAGE SPECTRUM METHOD

The average spectrum method is designed to solve lin-
ear integral equations of the form

g(y) =

∫

K(y, x) f(x) dx (1)

for f(x). Calculating g(y) given f(x) merely involves a
numerically stable integration. The inverse problem, on
the other hand, is ill-conditioned since it is numerically
hard to reconstruct sharp features in f(x) that enter g(y)
only after being integrated over. That becomes harder
the smoother the kernel K(y, x) as a function of x. The
problem is further complicated by the fact that g(y) is
usually determined by Monte Carlo methods, i.e., it is
only known within the statistical errors of the simulation.

An important application is the determination of the
spectral function A(ω) from the finite-temperature Green
function at the fermionic Matsubara frequencies ωm =
(2m+ 1)π/β

G(iωm) =
1

2π

∫ ∞

−∞

1

iωm − ω
A(ω) dω , (2)

at imaginary times (τ ∈ (0, β))

G(τ) = − 1

2π

∫ ∞

−∞

e−ωτ

1 + e−βω
A(ω) dω , (3)

or the coefficients Gl =
√
2l+1

∫ β

0
Pl(2τ/β − 1)G(τ) dτ

of its expansion in Legendre polynomials Pl(x) [13]

Gl = (−1)l+1

√
2l+1

2π

β

2

∫ ∞

−∞

i
(1)
l (βω/2)

cosh(βω/2)
A(ω) dω (4)

where i
(1)
l (x) are the modified spherical Bessel functions

of first kind [14].
Another important application is the determination of

the susceptibility χ′′(ω) from the correlation function at
the bosonic Matsubara frequencies ωm = 2mπ/β

Π(iωm) =
2

π

∫ ∞

0

ω2

ω2
m + ω2

χ′′(ω)

ω
dω , (5)

imaginary times

Π(τ) =
1

π

∫ ∞

0

ω
e−ωτ + e+ωτ

1− e−βω

χ′′(ω)

ω
dω , (6)

or its Legendre expansion, which vanishes for odd l, while
for even l

Πl =

√
2l+1

π
β

∫ ∞

0

ω
i
(1)
l (βω/2)

sinh(βω/2)

χ′′(ω)

ω
dω. (7)

In all these cases the function A(ω) or χ′′(ω)/ω to be
determined is known to be non-negative.
In practice the QMC data is given as a discrete vector

g = (g1, . . . , gM )† of M data points. The mean over K
samples is

g =
1

K

K∑

k=1

gk (8)

and its statistical uncertainty, when the samples are un-
correlated, is characterized by the covariance matrix

C =
1

K(K−1)

∑

k

(gk − g)(gk − g)†. (9)

By the central limit theorem, the probability density of
measuring g instead of the exact result gexact is propor-
tional to exp(−(g − gexact)

†C−1(g − gexact)/2).
Given some function f(x), it is straightforward to cal-

culate the corresponding g[f ](y) by integration, (1), and
discretizing it, to obtain g[f ]. Assuming that f(x) is
the exact model, the probability density for measuring g

given covariance C is

p(g|f,C) ∝ e−
1

2
(g−g[f ])† C−1 (g−g[f ]) =: e−

1

2
χ2[f ] . (10)

The idea of the average spectrum method is to aver-
age all functions f(x) with the probability that they are
the exact model, given the measured data (g,C), i.e., to
perform the functional integral

fASM(g,C; x) =

∫

Df p(f |g,C) f(x). (11)

By Bayes’ theorem the posterior probability density is

p(f |g,C) =
p(g|f,C) p(f)

p(g|C)
, (12)

where the likelihood is given by (10), p(f) is the prior
probability density, and p(g|C) =

∫
Df p(g|f,C) p(f) is

the normalization. For the spectral function and suscep-
tibilities we know that f is non-negative. Setting the
prior probability to zero for models that violate this con-
straint and constant otherwise, (11) becomes

fASM(g,C; x) ∝
∫

f(x)≥0

Df e−
1

2
χ2[f ] f(x) . (13)

Estimating f(x) just requires performing an integral over
non-negative models while there is no need for any ad-
justable parameters. Instead, the regularization results
exclusively from the uncertainty in the data as given by
the covariance C: the larger the statistical noise, the
stronger the contribution of models that do not fit the
data particularly well. We can thus expect that accu-
rate data will give us spectra with sharp features, while
for noisy data the spectra will contain less information,
being more smoothed out by the averaging [6–8].
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III. TEST CASES

For illustrating how the average spectrum method per-
forms we use the test cases introduced in Ref. [15]: We
try to reconstruct an optical conductivity given by

σ(ω) =
1

1 + (ω/Γe)6

∑

p=0,±1

W|p|

1 + ((ω + sgn(p)ε|p|)/Γ|p|)2

(14)
where the overall factor with Γe = 4 cuts off σ(ω) for
large frequencies and the terms in the sum give a (Drude)
peak of weight W0 = 0.3 and width Γ0 = 0.3 (model 1)
or 0.6 (model 2), and two symmetric peaks of weight
W1 = 0.2 and width Γ1 = 1.2 centered at ω = ±ε1 = ±3.
The corresponding correlation function on the bosonic
Matsubara frequencies iωm = 2πmi/β

Π(iωm) =
2

π

∫ ∞

0

dω
ω2

ω2
m + ω2

σ(ω) (15)

can be calculated analytically. The input data for the
analytic continuation is the imaginary-frequency corre-
lation function Πm = Π(iωm)(1 + rm) on the first 60
Matsubara frequencies m = 0, . . . , 59 with Gaussian (rel-
ative) noise rm of variance σΠ, where σΠ = 0.01 (noisy
data) or 0.001 (accurate data). The inverse temperature
is β = 15.

IV. BLOCKED MODES SAMPLING

To evaluate the functional integral (13) numerically,
we discretize f(x). Introducing a grid of N intervals, we
can, e.g., represent it as a piece-wise constant function of
value fn on interval n: f = (f1, . . . , fN )T. The integral
equation (1) then becomes a linear equation

g = Kf (16)

and the functional χ2[f ] is approximated by

χ2(f) = (g −Kf)† C−1 (g −Kf). (17)

It is then easy to modify (17) such that the covariance
matrix no longer appears explicitly. For this we factorize
C−1 = T†T, e.g., by Cholesky decomposition, to obtain

χ2(f) = (g̃ − K̃f)† (g̃ − K̃f) = ‖g̃ − K̃f‖2 (18)

with g̃ := Tg and K̃ = TK. The covariance C̃ of the
transformed data g̃ is, by construction, the unit matrix.

The functional integral (13) is then estimated from

fASM(g̃) ∝
N∏

n=1

∫ ∞

0

dfn f e
− 1

2
χ2(f) . (19)

This N -dimensional integral can be evaluated by Monte
Carlo techniques.

f2

f1

FIG. 1. Schematic contour plot of the Gaussian probability-
density exp(−χ2(f)/2) in the plane of two values f1 and f2.
The unphysical region f < 0 is shaded in gray. In compo-
nents sampling the moves fi → f ′

i are proposed parallel to
the coordinate axes, resulting in narrow Gaussians of widths
that are of the order of 1/max(di). In modes sampling, moves
ei → e′i are proposed along the principal axes of the multivari-
ate Gaussian, so that the moves in directions corresponding
to small singular values can take large steps. Note that for
ill-conditioned problems the singular values di vary over many
orders of magnitude.

A. Components Sampling

The straightforward method for evaluating (19) is to
perform a random walk in the space of non-negative vec-
tors f , updating a single component, fn → f ′

n, at a time.
Detailed balance is fulfilled if we sample f ′

n from the con-
ditional distribution ∝ exp(−χ2(f ; f ′

n)/2) with

χ2(f ; f ′
n) =

∥
∥ g̃ − K̃f
︸ ︷︷ ︸

=:r̃

−K̃n(f
′
n−fn)

∥
∥
2

(20)

= K̃†
nK̃n

(

f ′
n−fn−

ℜK̃†
nr̃

K̃
†
nK̃n

)2

+ r̃†r̃− (ℜK̃†
nr̃)

2

K̃
†
nK̃n

where K̃n is the n-th column of K̃. We thus have to sam-
ple f ′

n from a univariate Gaussian of width σ = 1/‖K̃n‖
centered at µ = fn +ℜK̃†

nr̃/‖K̃n‖2 and truncated to the
non-negative values f ′

n ∈ [0,∞). This can be done very
efficiently [16].

Still, sampling components can be very slow because
the width of the Gaussian is, in general, extremely small,
i.e., the random walk performs only exceedingly small
steps. This is evident when sampling spectral functions:
we cannot change just a single fn without violating the
sum-rule. A common way out is to update several com-
ponents simultaneously under the constraint that, e.g., a
number of moments of f is conserved, and to use tem-
pering techniques [6–10]. A simpler and more systematic
way is to sample along the principal axes of the multivari-
ate Gaussian exp(−χ2(f)/2), i.e., to change basis. This
is illustrated in Fig. 1.
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B. Modes Sampling

To implement moves along the principal axes of χ2,
we use the singular value decomposition of the kernel
K̃ = UDVT, where U is a unitary matrix whose col-
umn vectors, Um, define a basis in the M -dimensional
data space, V is a unitary matrix whose columns, Vn,
define a basis in the N -dimensional space of discretized
models, and D is an M × N diagonal matrix with di-
agonal elements d1 ≥ d2 ≥ · · · ≥ dmin(N,M) ≥ 0. The
singular values dn > 0 determine how a mode in model
space affects the data: K̃Vn = dnUn, while the zero
modes Un with dn = 0 or n > M do not affect the
data. To simplify the notation we define dn := 0 for
n = min(N,M)+1, . . . ,max(N,M).

Transforming to the new bases h:=U†g̃ and e:=VTf

diagonalizes the quadratic form

χ2(f) =
∥
∥U†g̃ −DVTf

∥
∥
2
=

M∑

i=1

(
hi − di ei

)2
(21)

and we can write (19) as fASM(g̃) = VeASM(h), where
the integral in the new basis factorizes

eASM(h)i ∝
∫

f≥0

dei ei exp
(
−(diei − hi)

2/2
)
. (22)

For evaluating the integral we perform a random walk,
now updating one mode ei → e′i at a time. When the
corresponding singular value does not vanish, we sample
e′i from a univariate Gaussian of width σ = 1/di centered
at hi/di while for di = 0 we sample from a flat distribu-
tion. In both cases the distribution is truncated to the
interval for which f ′ ≥ 0.
Without the non-negativity constraint, the compo-

nents of eASM(h) for di > 0 would be given by hi/di, re-
sulting in a least-squares solution that, in general, would
be completely dominated by the noise in data modes hi

with exceedingly small singular values. The coupling of
the modes through the global condition f ≥ 0 is thus
crucial for regularization.
We find the allowed values of e′i from the condition

f ′ = f + (e′i − ei)Vi ≥ 0, which, in terms of the compo-
nents, is equivalent to e′i ≥ ei − fn/Vni for Vni > 0 and
correspondingly for Vni < 0. Thus e′i is constrained by

maxn

{
fn
Vni

∣
∣
∣
∣
Vni < 0

}

≤ ei−e′i ≤ minn

{
fn
Vni

∣
∣
∣
∣
Vni > 0

}

.

(23)
Sampling modes e′i is usually much more efficient than

sampling components f ′
n: For modes with large singular

value, the Gaussian is narrow so that the random walk
quickly jumps close to the expected value hi/di corre-
sponding to the best fit, and then stays close to it. For
modes with small or zero singular value the distribution
is very broad so that the random walk can take large
steps, allowing for an efficient sampling of the degrees of
freedom that are not strongly supported by the data.

FIG. 2. Example of the hierarchy of grid partitionings used
in blocked modes sampling. At the highest level (top) the
grid on which f is represented forms a single block. Sampling
on this block is modes sampling. At the level below the grid
is split into two blocks. If going to a lower level we split the
blocks in half, there would always be a block boundary at
the center of the grid. To avoid this, we shift the intervals
at every other level by half their width. At the lowest level
(bottom) the blocks are the individual intervals fn. Sampling
on these blocks is components sampling.

Still, sampling may become quite inefficient when non-
negativity restricts e′i to a narrow interval. This will
happen when f has regions where the fn are very small.
For a mode Vi that changes sign on such a region, e′i
cannot differ much from ei without violating (23). Since
the modes form a basis, there are many such modes. In
particular, modes sampling can become quite slow when
sampling spectral functions on grids with large cutoff. In
the tail of the spectral function, where there are many
small values fn, it can be more efficient to sample the
components fn directly since they tend to change χ2,
Eq. (20), only little.

C. Blocked Modes Sampling

The reason for the slow-down of modes sampling is that
the narrow intervals originating from regions where the
fn are small also limit the changes in regions where they
are large, i.e., where large steps could be taken. We can
avoid this by decoupling such regions and sampling them
separately. To do this, we split the kernel matrix K into
blocks corresponding to the different regions, perform an
SVD for each of them, and sample the resulting blocked
modes. Now the non-negativity constraint (23) involves
only components in the same region. Thus the inter-
vals over which the blocked modes can be sampled will
be larger than in modes sampling. On the other hand,
the blocked modes no longer give the principal axes of
the fit function χ2 so that the Gaussians from which the
modes are sampled will be more narrow than in modes
sampling. When we choose the regions as just the indi-
vidual grid points we are back to components sampling,
where the intervals are semi-infinite fn ∈ [0,∞), while
the Gaussians become quite narrow.
The idea of blocked modes sampling is thus to exploit

this trade-off between wide Gaussians and large inter-
vals by interpolating between the limits of modes and
components sampling. In practice we use a hierarchy of
partitionings of the grid as shown in Fig. 2 and sample in
each step all blocks of a randomly chosen hierarchy level.
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f̄ASM 6= W̃f̃ASM. Apparently, choosing different grids
implies different definitions of what values of the model
are allowed.
This becomes even more evident when we consider

what happens when we refine the grid by halving each in-
terval: Instead of the original N values f̄n on the original
grid, we now have twice as many values f̃ñ representing
the integral of the model over the halved intervals. The
two sets are thus related by f̄n = f̃2n−1 + f̃2n. Sampling

the f̃ñ ≥ 0 we find that the probability of sampling a
given value f̄n is proportional to

∫ ∞

0

df̃2n−1

∫ ∞

0

df̃2n δ(f̄n−f̃2n−1−f̃2n) =

∫ f̄n

0

df̃2n = f̄n,

(28)

i.e., sampling the f̃ñ on the fine grid with a flat distribu-
tion implies sampling on the coarse grid with a distribu-
tion that is biased against small values of f̃n. In other
words, the naive discretization of the functional integral
(19) does not have a proper continuum limit. We, conse-
quently, have to investigate the definition of a functional
integral more carefully.

C. Functional integrals

We have just seen that the naive discretization of
the functional integral, used so successfully in Feynman
path integrals [21], does not work for averaging spectra.
The problem is that sampling with a flat distribution
on different grids gives incompatible results so that the
discretized functional integral has no proper continuum
limit [22]. We can, however, enforce such compatibility in
(28) by introducing (separate) probability distributions

for the f̄n and the f̃ñ on the original and the halved in-
tervals

∫ f̄n

0

df̃2n p̃(f̃2n) p̃(f̄n − f̃2n) = p̄(f̄n). (29)

In principle, the probability distributions on the two
subintervals could be chosen independently, p̃2n−1 and
p̃2n. To avoid any bias we assume, however, that the
distribution only depends on the width but not the po-
sition of the interval. Thus p̃2n−1 = p̃2n =: p̃, since each
subinterval is half the width of the original interval.
The compatibility condition (29) means that the con-

volution of p̃ with itself equals p̄ which, in terms of the
Laplace transform

L{p}(s) =
∫ ∞

0

dt p(t) e−st, (30)

is equivalent to (L{p̃})2 = L{p̄}. To find the compat-
ible distribution on the fine grid given the distribution
on the original grid, we just have to take the inverse
transform of the square root of its Laplace transform:
p̃ = L−1{

√

L{p̄}}.

We want the distribution on the original grid to re-
semble a flat distribution. An obvious choice is to simply
introduce a cutoff: p̄c(f̄) =

(
Θ(f̄) − Θ(f̄−c̄)

)
/c̄, where

Θ(x) is the step function that vanishes for t<0 and is
one for t>0. The square root of its Laplace transform is√
1−e−c̄s/

√
c̄s. Expanding the numerator for s>0 in e−c̄s

and using that L{Θ(t−a)/
√
t−a}(s) = e−as Γ( 12 )/

√
s,

where Γ(z) =
∫∞

0
xz−1e−x dx is the Gamma function,

we find

L−1{
√

L{p̄c}}(f̃) =
1√
πc̄




Θ(f̃)
√

f̃
− 1

2

Θ(f̃−c̄)
√

f̃−c̄
− · · ·



,

(31)
which is negative due to the divergences at integer mul-
tiples of the cutoff c̄. Thus, for flat distributions p̄c(f̄)

with cutoff there exist no compatible distributions p̃c(f̃)
on the halved intervals. They are called indivisible [22].
Alternatively, we can start from an exponential

p̄e(f̄) = λe−λf̄ , which for λ ց 0 approaches a flat distri-
bution. Its Laplace transform is L{p̄e}(s) = λ/(s + λ).

Using L{e−at/
√
πt}(s) = (s+a)−1/2 we see that p̃e(f̃) =

e−λf̃/
√

πf̃/λ. Thus, the exponential distribution is di-

visible. In fact, from L{f(t) e−λt}(s)=L{f(t)}(s+λ) and

L{tw̃−1}(s) = s−w̃

∫ ∞

0

xw̃−1 e−x dx = s−w̃ Γ(w̃) (32)

it follows that it can be divided into any number, n, of
intervals of width w̃ = 1/n, i.e., it is infinitely divisible.
Note that w̃ is the width of the subinterval in units of the
width of the original interval. The process of subdivision
is consistent: halving the small intervals produces a dis-
tribution ˜̃p = L−1{

√

L{p̃}}, which, by L{p̃} =
√

L{p̄},
is equal to L−1{ 4

√

L{p̄}}, so that the continuum limit of
the functional integral is well defined. Of course, we are
not restricted to subintervals of equal width. For

pw,λ(f) = L−1

{

1/w

√

L{λe−λf}
}

(f) (33)

=
λw

Γ(w)
fw−1 e−λf =

fw−1 e−λf

∫∞

0
xw−1 e−λx dx

,

which is a gamma distribution with shape parameter w
and scale λ, we find the generalized compatibility relation

∫ f̄

0

df̃ pw̃,λ(f̃) pw̄−w̃,λ(f̄−f̃) = pw̄,λ(f̄) , (34)

where the scale λ remains unchanged, while the shape
parameter changes with the width of the interval.
Using gamma distributions we can now write down a

discretization of the functional integral with a well de-
fined continuum limit. For a particular grid of N points
and density ρ(x), we start with the naive discretization
(19), i.e., we sample the f̄n from a flat distribution

f̄ASM = lim
λ→0

cχ̄2

N∏

n=1

∫ ∞

0

df̄n
p1,λ(f̄n)

λ
f̄ e−

1

2
χ̄2(f), (35)
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ing regularization—as it should be. In fact, then results
become fairly independent of the actual choice of the reg-
ularization parameter over a wide range, highlighting the
importance of the default model rather than the regular-
ization parameter.
Finally, a practical method must be efficient. This has

so far been the cardinal problem of the average spec-

trum method. We have described an optimized imple-
mentation, without which we could not have analyzed
the method in such detail. While we have discussed here
only one specific test case, more can be found in [25]. In
addition we make an efficient web-based implementation
freely available at www.spektra.app.
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