Hauptseite > Publikationsdatenbank > Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels > print |
001 | 873814 | ||
005 | 20210130004518.0 | ||
024 | 7 | _ | |a 10.1063/1.5108658 |2 doi |
024 | 7 | _ | |a 2128/24330 |2 Handle |
024 | 7 | _ | |a WOS:000489245900006 |2 WOS |
037 | _ | _ | |a FZJ-2020-01019 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Siemon, A. |0 P:(DE-Juel1)131022 |b 0 |e Corresponding author |
245 | _ | _ | |a Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels |
260 | _ | _ | |a Melville, NY |c 2019 |b AIP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582027677_32444 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The emerging nonvolatile memory technology of redox-based resistive switching (RS) devices is not only a promising candidate for future high density memories but also for computational and neuromorphic applications. In neuromorphic as well as in memory applications, RS devices are configured in nanocrossbar arrays, which are controlled by CMOS circuits. With those hybrid systems, brain-inspired artificial neural networks can be built up and trained by using a learning algorithm. First works on hardware implementation using relatively large and high current level RS devices are already published. In this work, the influence of small and low current level devices showing noncontinuous resistance levels on neuromorphic networks is studied. To this end, a well-established physical-based Verilog A model is modified to offer continuous and discrete conduction. With this model, a simple one-layer neuromorphic network is simulated to get a first insight and understanding of this problem using a backpropagation algorithm based on the steepest descent method |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Ferch, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Heittmann, A. |0 P:(DE-Juel1)174220 |b 2 |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 3 |
700 | 1 | _ | |a Wouters, D. J. |0 0000-0002-6766-8553 |b 4 |
700 | 1 | _ | |a Menzel, S. |0 P:(DE-Juel1)158062 |b 5 |
773 | _ | _ | |a 10.1063/1.5108658 |g Vol. 7, no. 9, p. 091110 - |0 PERI:(DE-600)2722985-3 |n 9 |p 091110 - |t APL materials |v 7 |y 2019 |x 2166-532X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/873814/files/1.5108658.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/873814/files/1.5108658.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:873814 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)174220 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)158062 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APL MATER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|