001     873814
005     20210130004518.0
024 7 _ |a 10.1063/1.5108658
|2 doi
024 7 _ |a 2128/24330
|2 Handle
024 7 _ |a WOS:000489245900006
|2 WOS
037 _ _ |a FZJ-2020-01019
082 _ _ |a 600
100 1 _ |a Siemon, A.
|0 P:(DE-Juel1)131022
|b 0
|e Corresponding author
245 _ _ |a Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels
260 _ _ |a Melville, NY
|c 2019
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582027677_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The emerging nonvolatile memory technology of redox-based resistive switching (RS) devices is not only a promising candidate for future high density memories but also for computational and neuromorphic applications. In neuromorphic as well as in memory applications, RS devices are configured in nanocrossbar arrays, which are controlled by CMOS circuits. With those hybrid systems, brain-inspired artificial neural networks can be built up and trained by using a learning algorithm. First works on hardware implementation using relatively large and high current level RS devices are already published. In this work, the influence of small and low current level devices showing noncontinuous resistance levels on neuromorphic networks is studied. To this end, a well-established physical-based Verilog A model is modified to offer continuous and discrete conduction. With this model, a simple one-layer neuromorphic network is simulated to get a first insight and understanding of this problem using a backpropagation algorithm based on the steepest descent method
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ferch, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heittmann, A.
|0 P:(DE-Juel1)174220
|b 2
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 3
700 1 _ |a Wouters, D. J.
|0 0000-0002-6766-8553
|b 4
700 1 _ |a Menzel, S.
|0 P:(DE-Juel1)158062
|b 5
773 _ _ |a 10.1063/1.5108658
|g Vol. 7, no. 9, p. 091110 -
|0 PERI:(DE-600)2722985-3
|n 9
|p 091110 -
|t APL materials
|v 7
|y 2019
|x 2166-532X
856 4 _ |u https://juser.fz-juelich.de/record/873814/files/1.5108658.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873814/files/1.5108658.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873814
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174220
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21