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ABSTRACT

The emerging nonvolatilememory technology of redox-based resistive switching (RS) devices is not only a promising candidate for future high
density memories but also for computational and neuromorphic applications. In neuromorphic as well as in memory applications, RS devices
are configured in nanocrossbar arrays, which are controlled by CMOS circuits. With those hybrid systems, brain-inspired artificial neural
networks can be built up and trained by using a learning algorithm. First works on hardware implementation using relatively large and
high current level RS devices are already published. In this work, the influence of small and low current level devices showing noncontin-
uous resistance levels on neuromorphic networks is studied. To this end, a well-established physical-based Verilog A model is modified to
offer continuous and discrete conduction. With this model, a simple one-layer neuromorphic network is simulated to get a first insight and
understanding of this problem using a backpropagation algorithm based on the steepest descent method.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5108658., s

INTRODUCTION

Current computing systems are designed for computation pur-
poses. However, there is an increasing need for more cognitive tasks
as pattern recognition. As we, humans, are very good in solving
such tasks, people developed brain-inspired artificial neural net-
works (ANN’s) to handle these tasks. This culminated in the com-
plex, multilayer structuredDeep Learning (DL) systems of today that
even achieve better-than-human performance.1

Current DL ANN systems, however, are mainly software con-
structions that still run on classical von Neumann computers.
While their computational performance has tremendously increased
over the last decades, thanks to the advancement and scaling of
CMOS technology, for implementing more cognitive tasks, they are
much less efficient in terms of both system size and energy dis-
sipation than the human brain. In addition, strong performance

improvement is no longer expected due to the ending of Dennard
scaling and of Moore’s law. Hence, especially for edge computation
applications, there is a need for more efficient hardware to realize
these ANN systems.

The new emerging resistive switching (RS) devices2 (also called
“memristors”3 or better “memristive devices”4) offer interesting pos-
sibilities for an efficient hardware implementation of these ANN’s:
(i) RS devices can emulate synapse functionality (adaptable, non-
volatile weight) in a single device that is small and scalable compared
to complex CMOS circuits that would be needed to directly emu-
late the same functionality; (ii) RS devices can be configured in 2D
(and even 3D) crossbar arrays resulting in very dense network con-
nectivity; and (iii) such crossbar configuration is very efficient for
analog vector dot product computations.5 The latter feature is of
major importance as DL ANN’s use a backpropagation (BP) learn-
ing algorithm to determine the synapse weight values during the
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training phase.6 The basic kernel of this BP algorithm is matrix
multiplications involving a large amount of multiply and accumu-
late operations (MAC’S). This requires heavy computation and is
the computation bottleneck. Using RS crossbar arrays, the results
follow directly from a parallel current readout, and so they con-
stitute efficient vector-dot-product engines.5,7,8 The BP algorithm
needs 6-bit resolution of the synaptic weights during the learning
phase, requiring RS devices with analog programming behavior with
many programmable levels.9,10 Furthermore, because of energy con-
siderations, the RS devices should operate at low currents (and low
voltage).

The major RS devices investigated for these applications are
Phase-Change Memory (PCM) and redox-based resistive switching
RAM (ReRAM) devices.11 These devices were initially developed for
applications in binary switching memories but also have potential
for multilevel operation. In both devices, the switching from a high
ohmic resistance state (HRS) to a low ohmic resistance state (LRS)
is called SET and switching from LRS to HRS is defined as RESET.
If a device is set and reset with the same polarity of the device,
the switching is called unipolar, otherwise it is a bipolar switching
device. PCM devices have the drawback of unipolar switching while
analog programming behavior is available during SET. In contrast,
ReRAM devices can switch bipolar. While standard memory type
ReRAM devices show abrupt SET switching, by tuning the mate-
rial stack, analog programming in both SET and RESET can be
obtained.12,13 This makes ReRAM devices of high interest for this
application.

Filamentary switching ReRAM devices operate by the modu-
lation of a conductive filament, which is induced by the motion of
metal cations as Ag or Cu in electrochemical metallization (ECM)
memory cells or by the motion of charged oxygen vacancies in
devices based on the valence change mechanism (VCM).14,15 The
conductivity of this filament can be controlled either by the RESET
voltage or by the maximum current level attained during SET

operation. Depending on the chosen current level, however, quan-
tization of different conduction states with large “gaps” in attainable
values can be observed.16–23

The aim of this work is to investigate how this quantization
of possible conduction states in the ReRAM device influences the
learning operation of an ANN. For a first insight, the small system
presented in Prezioso’s work7 is analyzed by means of simulation
using a deterministic ECM device circuit model featuring discrete
conduction steps. Here, a BP learning algorithm based on the steep-
est decent method is used for a one-layer neuromorphic network.
It is shown that the existence of discrete conduction states sepa-
rated with conductivity gaps can have a strong influence on both
the training cost and the system accuracy.24

SIMULATION MODEL

To create a model that features the discrete conduction state
mechanism,18 two well-established models were combined. The first
one is a well-established compact model for ECM cells,25,26 which
was also fitted to different ECM devices. The second one is a kinetic
Monte Carlo (kMC) ECM model, which was derived also from the
compact model in order to include switching variability and quan-
tization.18,27 By combining the quantization part of the kMC, which
was compared to the findings in experimental data, with the com-
pact model, a deterministic compact model featuring the quantized
conduction mode is obtained. Panel (a) of Fig. 1 depicts together
with panel (b) the equivalent circuitry of the continuous conduc-
tion model, whereas panels (a) and (c) show the discrete conduc-
tion model. In both cases, a filament grows from an inert electrode
toward an active electrode, which consists of Ag or Cu. In the con-
tinuous conduction model, the tunneling process is modeled by a
mean tunneling gap (xmean) and the tunneling processes appear over
the complete filamentary area. In the discrete conduction model, the

FIG. 1. (a) Equivalent circuit diagram (ECD) of the ECM model, where the tunneling branch needs to be distinguished for (b) the continuous conduction model and (c) the
discrete conduction model. (b) Illustration of the tunneling gap for the continuous model including ECD. (c) Illustration of the discrete conduction model with layer-by-layer
growth and ECD with all elements. (d) G vs x for the continuous model, and (e) G vs N (number of atoms in the filament) for the discrete model (open symbols) with
rfil = 1 nm. Thin lines (bar plot) indicate the number of states at the different conduction values for the last two conduction layers. Bar plots showing the number of states vs
G for (f) rfil = 1 nm and (g) for rfil = 10 nm.

APL Mater. 7, 091110 (2019); doi: 10.1063/1.5108658 7, 091110-2

© Author(s) 2019



APL Materials ARTICLE scitation.org/journal/apm

filament is built up by an atom by atom and a layer by layer growth
mechanism, which results in two parallel tunneling gaps. One tun-
nel gap describes the tunneling process of the residual layer (xres),
which is the last complete layer in the filament, and the other speci-
fies the tunnel process to the incomplete layer with a tunneling gap
(xin). The complete model description is found in the supplementary
material. In Ref. 28, we showed that the switching kinetics simulated
with 1D KMC model agree with the ones simulated with a more
complex 2D KMCmodel,27 which allows for the deposition of atoms
at arbitrary positions. Thus, the approximation of the growth mode
in our simple 1D model gives reasonable results while reducing the
computation time by orders of magnitude.

Figures 1(d) and 1(e) show the conductance of the two differ-
ent models as a function of their respective state variables. In the
continuous ECM model, the conductance increases exponentially if
the tunneling gap decreases representing an analog device. The dis-
crete model, however, shows regimes of quasianalog conductance
separated by distinct conductance jumps. This jump occurs when-
ever a new layer appears. The first atom on the new layer gives the
biggest conductance jump. This behavior has been reported for the
Cu2S-based ECM cell.29,30 With increasing number of atoms in the
incomplete layer, the conductance jumps get smaller and eventu-
ally they become quasianalog. This transition can be illustrated if
the logarithm of the conductance is divided into equidistant con-
ductance bins and counting the number of states within these bins,
which is done exemplary for the last two layers in Fig. 1(e). As shown
in Fig. 1(f), the number of states is increasing until a complete layer
forms. Between two layers, a conductance gap appears. The width
of this conductance gap depends on the filament radius. The largest
gap is always the gap between the first atom of the galvanic contact
layer (Gcontact), which closes the gap between the filament and the
electrode, and the full previous layer (Gstub). It is larger for smaller
filament radii and vice versa [cf. Figs. 1(f) and 1(g)]. For very large
filament radii, the conductance vs state variable plot will converge to
the analog exponential behavior of the continuous model.

Both models are deterministic. Thus, the weight updates in
response to an excitation is determined exactly by the current state
of the cell. In reality, however, the weight update might change due
to the intrinsic switching variability. Nevertheless, the conductance

would show quantized levels. Using our simulation model, we are
able to discriminate between the effects of switching variability and
quantized conduction effects. In this study, we focus on the impact
of noncontinuous resistance levels.

SYSTEM AND SETUP

Prezioso et al.7 proposed an ANN which can distinguish
between the three classes “z,” “v,” and “n” using a 3 × 3 pixel pic-
ture, resulting in a 9 input 3 output one layer ANN, and an algorithm
based on the steepest descent. Here, the ReRAM devices are used to
weight the different inputs for each output and can be changed by
applying write pulse of height ±Vwrite and pulse length tcycle. This
system is adapted and built up for simulation using the continuous
and the discrete model. It is chosen as a simple way to understand
the differences in the behavior between the two buildups. A complete
and extended description of the system and the learning algorithm
is found in the supplementary material.

The simulations were performed using a combination of MAT-
LAB and Cadence software. MATLAB acted as a control unit dur-
ing the simulation, whereas the main circuit simulations were per-
formed using the Spectre Circuit Simulator from Cadence. The
training procedure starts with a read step of all possible input pic-
tures, which is used to evaluate the network response and cost val-
ues. Afterwards, the weight updates were calculated usingMATLAB.
Weight update, read, and evaluation steps define one training epoch,
which is repeated in a loop structure until the specified number
of training epochs was reached. In one training epoch, the whole
dataset of input pictures is used.

CONTINUUM MODEL SIMULATIONS

For first tests, the behavior of the conductance state depending
on the applied write voltage pulses is studied. For this, the device
was first read by a read voltage of Vread = 0.1 V and then a volt-
age pulse of different pulse heights Vwrite and tcycle = 10 μs length is
applied. Afterwards, a second read pulse is performed. In Fig. 2(a),
the difference of both simulated read conductance values is plotted

FIG. 2. (a) Conductance evolution dependent on the applied write voltage for 10 μs pulses. The used voltage is varied in a range of |Vwrite| = 0.8 V–1.4 V. The dashed lines
indicate the negative voltages, whereas the solid lines depict the positive values. Comparison of (b) cost, (c) training accuracy, and (d) energy during training for two different
weight initializations. Blue correspond to μ = 1 μS, σ = 0.1 μS, and Vwrite = 1.3 V, whereas for orange, the standard parameters were used (μ = 300 μS, σ = 20 μS, and
Vwrite = 1 V).
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TABLE I. Standard simulation parameters.

Parameter Symbol Value

Write voltage Vwrite 1 V
Pulse length tcycle 10 μs
Read voltage Vread 0.1 V
Parameter for the range of the output α 1.7159 V

Normalization factor β0 2 × 105

Mean conductance value μ 300 μS
Standard deviation of the conductance values σ 20 μS
Minimum conductance value Gmin 0 μS
Maximum conductance value Gmax 600 μS

against the conductance of the first read. The conductance change
shows not only a dependency on the applied voltage, as was expected
due to the nonlinear switching kinetics of the device, but also a state
dependence. In our model, this state dependence is based on the
filamentary growth mechanism in an ECM cell31,32 and the expo-
nential dependence of the current on the tunneling gap.33,34 The
state-dependence has been shown for different ReRAM devices and
this basis for analog weight adaption.35–43 The behavior of the exper-
iment of Fig. 2(a) is crucial for neuromorphic applications, since it
gives a first hint of how to pick the write voltage for specific initial-
ization states of the system.44 If not stated otherwise, the standard
parameters of Table I are used for simulation. The first step of all
system simulations is the initialization of the devices with conduc-
tance states, which are drawn from a truncated normal distribu-
tion with the minimum and maximum value of the conductance
Gmin = 0 μS and Gmax = 600 μS, respectively.

To verify the correct behavior, the system was set up with
the continuous model for two different initializations of the

conductance state of the 60 devices. In case 1, the standard param-
eters were used. In case 2, the mean conductance value and the
standard deviation were chosen to be μ = 1 μS and σ = 0.1 μS,
respectively. To achieve a comparable learning speed, two different
write voltages for these experiments are used. In case 1, the standard
write voltage was chosen, whereas the write voltage of case 2 is set
to 1.3 V.

The cost and training accuracy of the system are shown in
Figs. 2(b) and 2(c), respectively. As expected, the training cost is
reduced and the accuracy increases with the number of training
epochs, showing the correct behavior of the system. Even though the
accuracy reached 100% after a few epochs, the cost function could
be further minimized. The accuracy only gives an account of the
right classification for the training set, but it does not identify the
insecurity of the decision. The cost function illustrates how well the
decision is matching the ideal output and thus indicates the security
of the decision.

In Fig. 2(d), the energy consumption of training the ReRAM
array is depicted. Even though the write voltage of case 2 is higher,
the energy consumption is less, since the array has an overall higher
impedance than in case 1. Note that this energy is only the energy
needed for the ReRAM array. The overall power consumption will
be higher since the whole CMOS periphery and control unit is not
taken into account. Overall, the system seems to be robust against
the change in the conductance initialization if the write voltage is
chosen properly with respect to the initialization.

As a next step, the convergence behavior of the system is further
investigated. This time the system was five times initialized with the
same distribution of conductance. Thus, the impact of the update
voltage can be evaluated independent of the specific initialization.
For each initialization, the write voltage was varied between 1 V and
1.6 V to find the optimum voltage for a stable, fast convergence.
Figures 3(a)–3(d) show the cost function and the training accuracy
of these simulations. In Figs. 3(a) and 3(b), the voltages are depicted

FIG. 3. [(a)–(d)] Influence of the update voltage Vwrite on the training performance. The results in the top row depict the voltages showing convergence, whereas the used
voltages in the bottom row cause divergence. [(e)–(h)] Training performance of the system considering discrete conductance states for different filament radii. For (e) and
(g), the conductances were initialized with μ = 300 μS and σ = 60 μS, and Vwrite = 1 V was used. (f) and (h) show the results for the parameters μ = 1 μS, σ = 0.1 μS, and
Vwrite = 1.3 V.
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for which the system mostly converges. The update voltages 1 V and
1.1 V show a fast and stable convergence. For 1.2 V, the system
converges even faster, but it is not really stable and does not reach
the high accuracy and low cost function values as for the other two
voltages. Having a higher update voltage, the conductance change
is higher in each step, which is beneficial in the beginning for the
rough weight adjustment, but hindering the fine adjustment. Here, a
voltage of 1.1 V is the best compromise. For this voltage, the system
shows the best performance, as it converges faster than for 1 V and is
more reliable than with 1.2 V. If the voltage is further increased, the
problems occurring for 1.2 V will be even more present, as shown
in Figs. 3(c) and 3(d). As shown before, if the system is initialized
in a different conductance regime, the optimum voltage can be dif-
ferent, since the conductance change depends on the voltage and on
the starting conductance [cf. Fig. 2(a)].

DISCRETE SIMULATION MODEL

If a discrete conduction mechanism is assumed, the system
needs to be able to compensate for the nonexisting conduction
states. To test the robustness of the system with regard to this effect,
the discrete resistance model is used. Since the conduction gaps
depend on the filament radius, the filament radii of all devices are
set to 1 nm, 3 nm, 5 nm, 7 nm, or 10 nm. For the initialization,
two extreme cases can be considered: initializations in a high state
density region and in a low state density region. The standard ini-
tialization parameters of Table I (μ = 300 μS and σ = 20 μS) result in
an initialization in the galvanic layer (low state density region). Here,
the conductance state density is very low. Hence, the standard devi-
ation was increased to σ = 60 μS. Figures 3(e) and 3(f) depict the cost
function and training accuracy of these simulations. In Figs. 3(e) and
3(f), abrupt spikes are visible for all used filament radii. Thus, con-
vergence does not seem feasible for the system. As a second test, the
devices were initialized with μ = 1 μS and σ = 0.1 μS. Here, the tar-
geted conductances are belowGstub and thus in a higher state density
region for filaments with rfil > 1 nm. For filament radii rfil > 3 nm and
thus a nearby high state density, the cost function reduces quickly
[Fig. 3(g)]. For the filament radius of 1 nm, however, the targeted
conduction is inside the gap between Gstub and Gcontact. Accordingly,
all cells are initialized to Gstub. Like before, the write voltage is set
to 1.3 V to achieve comparable learning rates. The results of these

simulations are depicted in Figs. 3(g) and 3(h). Here, convergence
is not achieved for filaments with 1 nm or 3 nm radii. The 1 nm
case does not shows any convergence from the beginning. In con-
trast, the 3 nm case converges until the 42nd epoch, but then starts to
oscillate.

To investigate the nature of those fluctuations, the transients
of the conductances of randomly selected devices of the rfil = 5 nm,
μ = 300 μS, and σ = 60 μS case are shown in Fig. 4(a). The gray hori-
zontal lines depict feasible conductance states. All transients start in
the states of the galvanic layer and as expected the transition between
the states is abrupt. Thus, the change in the conductance is abrupt,
too. If one device state starts to oscillate between Gstub and Gcontact

(pink and light green lines), fluctuations in the cost function result.
Similar to using larger writing voltages, the weight jumps are too
big to be handled properly with the algorithm. The weights cannot
be adjusted fine enough due to the missing state density in the gap
region. The algorithmworks better for the (μ = 1 μS, σ = 0.1 μS) cases
as the devices were initialized in a region of high state density.

Another possibility to avoid transitions over the gap, and thus
to keep the conductance changes small enough to have less conver-
gence issues, is to change the normalization factor β [cf. supplemen-
tary material (20)], since it defines the target weights. Until now,
the standard value was 2 × 105 and is kept unchanged. Due to the
standard normalization factor, the targeted weights are in the range
of 5 μS–15 μS. Hence, the weights of the μ = 300 μS cases need to
be decreased, whereas the weights of the μ = 1 μS cases need to be
increased. To achieve lower targeted weights, β is set to 2 × 106 for
the rfil = 3 nm, μ = 1 μS, and σ = 0.1 μS case. The comparison of
the overall maximum and minimum conductance states of the sys-
tem with both β values is depicted in Fig. 4(b). Using the standard
β value, the maximum conductance value shows jumps to one point
above Gcontact (turquoise). This jump corresponds to the start of the
cost function fluctuation. In contrast, the maximum conductance
value in the simulation with the increased β value stays belowGcontact

during the course of the training.

DISCRETE SIMULATION MODEL WITH VARIABLE
FILAMENT

In a second study, the filament radii were no longer assumed
to be equal for all cells. They were drawn from a truncated normal

FIG. 4. (a) Transient of 10 randomly selected cell conductances for the case rfil = 5 nm, μ = 300 μS, and σ = 60 μS. The background grid indicates feasible states. (b)
Transient of minimum and maximum conductance of all cells in the network for two values of normalization parameter β0.
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FIG. 5. [(a) and (b)] Training performance resulting from weight initialization with
parameters μ = 300 μS and σ = 60 μS. [(c) and (d)] Training performance
resulting from weight initialization with parameters μ = 1 μS and σ = 0.1 μS. In
these simulations, the memristive synapses were initialized each with a randomly
drawn filament radius rfil from a truncated normal distribution with rfil,min = 1 nm,
rfil,max = 20 nm, μfil = 7 nm, and σfil = 2 nm.

distribution with rfil,min = 1 nm and rfil,max = 20 nm denoting
the respective minimum and maximum filament radii, respectively.
These choices of filament radii are consistent with experimental
work.45–47 The upper limit was chosen in order not to exceed cell
dimensions (feature size F = 40nm). The mean and standard devia-
tion were chosen to be μfil = 7 nm and σfil = 2 nm, respectively. Again,
simulations were performed using both previously discussed ini-
tialization regimes: the standard initialization regime and the lower
conductance regime (μ = 1 μS and σ = 0.1 μS). The resulting training
performance indicators are visualized in Fig. 5. The results validate
our previous results. For regions of low conductance state density,
i.e., the standard initialization regime, stable operation cannot be
ensured [Figs. 5(a) and 5(b)]. While now cells with small diameters
can be compensated with cells with a wide filament, the occurrence
of resistance gaps still exists andmay deteriorate the network perfor-
mance. Using an initialization with μ = 1 μS, the cells are initialized
in a region with high state density. Here, comparable performance to
the continuous model is achieved [Figs. 5(c) and 5(d)]. Nevertheless,
it is still necessary to adjust parameter β0 to ensure stable training
operation.

CONCLUSION

In summary, a Verilog Amodel of an ECMReRAMwas derived
by combining two well-established ECM models, which incorpo-
rates the discrete conduction steps that are observed in the exper-
iment at low current levels. It is used to investigate the influence
of discrete conduction steps on the training accuracy of a sim-
ple one-layer ECM-based ANN using a backpropagation learning
algorithm based on the steepest descent method. The simulation
results show that noncontinuous resistance levels will deteriorate the

network performance in comparison to devices with completely ana-
log behavior. The convergence of the system will be either difficult
or not achieved at all. Here, we studied a one-layer network. The
problem of convergence is expected to become more severe for net-
works with multiple layers. The problem of noncontinuous resis-
tance levels will occur when scaling down the size of the device
to the 10× nanometer scale. In addition, it will appear if the cur-
rent levels, and thus the filament dimensions, are getting very small.
Thus, it is necessary to consider noncontinuous resistance levels
when designing a neural network in ultrascaled technology nodes.
The simulation results also showed how to cope with this problem.
First, all the memristive devices need to be initialized in a region of
a high state density. To this end, the cells need to be characterized
before initialization. In addition, some algorithm parameters can be
adapted to improve the convergence. The last opportunity would be
to increase the amount of synapses in order to achieve quasicontin-
uous resistance levels, but this comes with the expense of higher area
and power consumption of the network. Besides the noncontinuous
resistance levels, fluctuations can occur due to the intrinsic switching
variability leading to bigger or smaller conductance change during
a weight update. Nevertheless, the resistance change will be due to
individual jumps of atomic defects, leading to noncontinuous resis-
tance levels for very small filament dimensions. Thus, the results
should still be valid when variability is considered. The switching
variability will lead to additional problems for the learning process.
The impact of the variability will be addressed in a future study.
Finally, additional experimental results on ultrascaled ECM devices
operated in this narrow filament regime will ultimately be needed to
confirm the conclusions of this paper.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed description of the
used ECM models and background information on the 1-layer
neural network and the learning algorithm.
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