001     873817
005     20240711092255.0
024 7 _ |a 10.1016/j.apsusc.2019.03.312
|2 doi
024 7 _ |a 0169-4332
|2 ISSN
024 7 _ |a 1873-5584
|2 ISSN
024 7 _ |a 2128/24328
|2 Handle
024 7 _ |a altmetric:59278124
|2 altmetric
024 7 _ |a WOS:000464940900001
|2 WOS
037 _ _ |a FZJ-2020-01022
082 _ _ |a 660
100 1 _ |a Coll, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Towards Oxide Electronics: a Roadmap
260 _ _ |a Amsterdam
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581674327_4397
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore’s law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fontcuberta, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Althammer, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bibes, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Boschker, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Calleja, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cheng, G.
|0 P:(DE-Juel1)180398
|b 6
|u fzj
700 1 _ |a Cuoco, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dittmann, R.
|0 P:(DE-Juel1)130620
|b 8
700 1 _ |a Dkhil, B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a El Baggari, I.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Fanciulli, M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Fina, I.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fortunato, E.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Frontera, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fujita, S.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Garcia, V.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Goennenwein, S. T. B.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Granqvist, C.-G.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Grollier, J.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Gross, R.
|b 20
700 1 _ |a Hagfeldt, A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Herranz, G.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Hono, K.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Houwman, E.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Huijben, M.
|0 P:(DE-Juel1)174222
|b 25
700 1 _ |a Kalaboukhov, A.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Keeble, D. J.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Koster, G.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Kourkoutis, L. F.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Levy, J.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Lira-Cantu, M.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a MacManus-Driscoll, J. L.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Mannhart, Jochen
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Martins, R.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Menzel, S.
|b 35
700 1 _ |a Mikolajick, T.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Napari, M.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Nguyen, M. D.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Niklasson, G.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Paillard, C.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Panigrahi, S.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Rijnders, G.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Sánchez, F.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Sanchis, P.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Sanna, S.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Schlom, D. G.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Schroeder, U.
|0 P:(DE-Juel1)130958
|b 47
700 1 _ |a Shen, K. M.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Siemon, A.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Spreitzer, M.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Sukegawa, H.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Tamayo, R.
|0 P:(DE-HGF)0
|b 52
700 1 _ |a van den Brink, J.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Pryds, N.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Granozio, F. Miletto
|0 P:(DE-HGF)0
|b 55
|e Corresponding author
773 _ _ |a 10.1016/j.apsusc.2019.03.312
|g Vol. 482, p. 1 - 93
|0 PERI:(DE-600)2002520-8
|p 1 - 93
|t Applied surface science
|v 482
|y 2019
|x 0169-4332
856 4 _ |u https://juser.fz-juelich.de/record/873817/files/1-s2.0-S0169433219309432-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873817/files/1-s2.0-S0169433219309432-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873817
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180398
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 47
|6 P:(DE-Juel1)130958
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SURF SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21