000873847 001__ 873847
000873847 005__ 20250129092445.0
000873847 0247_ $$2doi$$a10.1007/s10909-020-02340-6
000873847 0247_ $$2ISSN$$a0022-2291
000873847 0247_ $$2ISSN$$a1573-7357
000873847 0247_ $$2WOS$$aWOS:000509338600003
000873847 037__ $$aFZJ-2020-01049
000873847 082__ $$a530
000873847 1001_ $$0P:(DE-HGF)0$$aLópez-López, O.$$b0$$eCorresponding author
000873847 245__ $$aEnergy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures
000873847 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2020
000873847 3367_ $$2DRIVER$$aarticle
000873847 3367_ $$2DataCite$$aOutput Types/Journal article
000873847 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636039328_8170
000873847 3367_ $$2BibTeX$$aARTICLE
000873847 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873847 3367_ $$00$$2EndNote$$aJournal Article
000873847 520__ $$aThe energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.
000873847 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000873847 588__ $$aDataset connected to CrossRef
000873847 7001_ $$0P:(DE-HGF)0$$aMartínez, I.$$b1
000873847 7001_ $$0P:(DE-HGF)0$$aCabrera, A.$$b2
000873847 7001_ $$0P:(DE-HGF)0$$aGutiérrez-D, E. A.$$b3
000873847 7001_ $$0P:(DE-HGF)0$$aFerrusca, D.$$b4
000873847 7001_ $$0P:(DE-Juel1)161528$$aDurini, D.$$b5
000873847 7001_ $$0P:(DE-HGF)0$$aDe la Hidalga-Wade, F. J.$$b6
000873847 7001_ $$0P:(DE-HGF)0$$aVelazquez, M.$$b7
000873847 7001_ $$0P:(DE-HGF)0$$aHuerta, O.$$b8
000873847 7001_ $$0P:(DE-Juel1)156521$$aKruth, A.$$b9
000873847 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, C.$$b10
000873847 7001_ $$0P:(DE-Juel1)174165$$aArtanov, A.$$b11
000873847 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, S.$$b12
000873847 773__ $$0PERI:(DE-600)2016984-X$$a10.1007/s10909-020-02340-6$$p171-181$$tJournal of low temperature physics$$v99$$x1573-7357$$y2020
000873847 8564_ $$uhttps://juser.fz-juelich.de/record/873847/files/L%C3%B3pez-L%C3%B3pez2020_Article_EnergyConsumptionConversionAnd.pdf
000873847 909CO $$ooai:juser.fz-juelich.de:873847$$pVDB
000873847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich$$b5$$kFZJ
000873847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b9$$kFZJ
000873847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b10$$kFZJ
000873847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174165$$aForschungszentrum Jülich$$b11$$kFZJ
000873847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b12$$kFZJ
000873847 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873847 9141_ $$y2021
000873847 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873847 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873847 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873847 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ LOW TEMP PHYS : 2017
000873847 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873847 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873847 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873847 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873847 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873847 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873847 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873847 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873847 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000873847 980__ $$ajournal
000873847 980__ $$aVDB
000873847 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000873847 980__ $$aUNRESTRICTED
000873847 981__ $$aI:(DE-Juel1)PGI-4-20110106