001     873847
005     20250129092445.0
024 7 _ |a 10.1007/s10909-020-02340-6
|2 doi
024 7 _ |a 0022-2291
|2 ISSN
024 7 _ |a 1573-7357
|2 ISSN
024 7 _ |a WOS:000509338600003
|2 WOS
037 _ _ |a FZJ-2020-01049
082 _ _ |a 530
100 1 _ |a López-López, O.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Energy Consumption, Conversion, and Transfer in Nanometric Field-Effect Transistors (FET) Used in Readout Electronics at Cryogenic Temperatures
260 _ _ |a Dordrecht
|c 2020
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636039328_8170
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The energy consumed by electron devices such as field-effect-transistors (FET) in an integrated circuit is mostly used to process different electrical signals. However, a fraction of that energy is also converted into heat that gets transferred throughout the integrated circuit and modifies the local temperature. The modification of the local temperature, which is interpreted as a self-heating mechanism, is a function of different charge carrier scattering mechanisms, the characteristic energy relaxation times for charge carriers, the heat carrier mechanisms, the geometry of the FET, the volume of the integrated circuit, and the composed thermal properties of the integrated circuit and the system package. Besides all those dependencies, the charge and heat transport properties are temperature dependent. All these features make the electrothermodynamic analysis and modeling of low-power cryogenic electron devices a compulsory need. In this work, we introduce an analysis based on experimental results obtained from characterizing FET test structures in the temperature range between 300 K and down to 3.1 K.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Martínez, I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cabrera, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gutiérrez-D, E. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ferrusca, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Durini, D.
|0 P:(DE-Juel1)161528
|b 5
700 1 _ |a De la Hidalga-Wade, F. J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Velazquez, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Huerta, O.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kruth, A.
|0 P:(DE-Juel1)156521
|b 9
700 1 _ |a Degenhardt, C.
|0 P:(DE-Juel1)167475
|b 10
700 1 _ |a Artanov, A.
|0 P:(DE-Juel1)174165
|b 11
700 1 _ |a van Waasen, S.
|0 P:(DE-Juel1)142562
|b 12
773 _ _ |a 10.1007/s10909-020-02340-6
|0 PERI:(DE-600)2016984-X
|p 171-181
|t Journal of low temperature physics
|v 99
|y 2020
|x 1573-7357
856 4 _ |u https://juser.fz-juelich.de/record/873847/files/L%C3%B3pez-L%C3%B3pez2020_Article_EnergyConsumptionConversionAnd.pdf
909 C O |o oai:juser.fz-juelich.de:873847
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156521
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)174165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)142562
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J LOW TEMP PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21