001     873863
005     20210130004527.0
024 7 _ |a 10.3390/ijms21031082
|2 doi
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
024 7 _ |a 2128/24338
|2 Handle
024 7 _ |a altmetric:76148487
|2 altmetric
024 7 _ |a pmid:32041254
|2 pmid
024 7 _ |a WOS:000522551607009
|2 WOS
037 _ _ |a FZJ-2020-01055
082 _ _ |a 540
100 1 _ |a Kubo, Yusuke
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Different Frequency of Cyclic Tensile Strain Relates to Anabolic/Catabolic Conditions Consistent with Immunohistochemical Staining Intensity in Tenocytes
260 _ _ |a Basel
|c 2020
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581682654_5059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tenocytes are mechanosensitive cells intimately adapting their expression profile and hence, their phenotype to their respective mechanomilieu. The immunolocalization and expression intensity of tenogenic, anabolic and catabolic markers in tenocytes in response to in vitro mechanical loading have not been monitored by immunohistochemical staining (IHC). Thus, we investigated the association between IHC intensities, different stimulation frequencies, and tenogenic metabolism using a versatile mechanical stretcher. Primary tenocytes obtained from murine Achilles tendons were transferred to poly(dimethylsiloxane) (PDMS) elastomeric chamber. Chambers were cyclically stretched by 5% in uniaxial direction at a variation of tensile frequency (1 or 2 Hz) for 3 h. After stretching, cell physiology, IHC intensities of tendon-related markers, and protein level of the angiogenesis marker vascular endothelial growth factor (VEGF) were evaluated. Cell proliferation in tenocytes stimulated with 1 Hz stretch was significantly higher than with 2 Hz or without stretch, while 2 Hz stretch induced significantly reduced cell viability and proliferation with microscopically detectable apoptotic cell changes. The amount of scleraxis translocated into the nuclei and tenomodulin immunoreactivity of tenocytes treated with stretch were significantly higher than of non-stretched cells. The collagen type-1 expression level in tenocytes stretched at 1 Hz was significantly higher than in those cultivated with 2 Hz or without stretching, whereas the matrix metalloproteinase (MMP)-1 and MMP-13 immunoreactivities of cells stretched at 2 Hz were significantly higher than in those stimulated with 1 Hz or without stretching. The secreted VEGF-protein level of tenocytes stretched at 2 Hz was significantly higher than without stretching. Our IHC findings consistent with cell physiology suggest that appropriate stretching can reproduce in vitro short-term tenogenic anabolic/catabolic conditions and allow us to identify an anabolic stretching profile.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 1
|u fzj
700 1 _ |a Goltz, Katja
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schnakenberg, Uwe
|0 0000-0002-2251-0605
|b 3
700 1 _ |a Jahr, Holger
|0 0000-0001-7308-5584
|b 4
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 5
700 1 _ |a Schulze-Tanzil, Gundula
|0 0000-0002-9807-9532
|b 6
700 1 _ |a Pufe, Thomas
|0 0000-0002-7886-9211
|b 7
700 1 _ |a Tohidnezhad, Mersedeh
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.3390/ijms21031082
|g Vol. 21, no. 3, p. 1082 -
|0 PERI:(DE-600)2019364-6
|n 3
|p 1082 -
|t International journal of molecular sciences
|v 21
|y 2020
|x 1422-0067
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/873863/files/ijms-21-01082-v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/873863/files/ijms-21-01082-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873863
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOL SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21