000873869 001__ 873869
000873869 005__ 20240712113250.0
000873869 0247_ $$2doi$$a10.1016/j.apenergy.2018.08.099
000873869 0247_ $$2ISSN$$a0306-2619
000873869 0247_ $$2ISSN$$a1872-9118
000873869 0247_ $$2WOS$$aWOS:000448226600010
000873869 037__ $$aFZJ-2020-01061
000873869 082__ $$a620
000873869 1001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b0$$eCorresponding author
000873869 245__ $$aNonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties
000873869 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000873869 3367_ $$2DRIVER$$aarticle
000873869 3367_ $$2DataCite$$aOutput Types/Journal article
000873869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581683235_18268
000873869 3367_ $$2BibTeX$$aARTICLE
000873869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873869 3367_ $$00$$2EndNote$$aJournal Article
000873869 520__ $$aA dead-ended anode (DEA) has advantages such as simple structure, high reliability, and low price, and is widely utilized in polymer electrolyte membrane fuel cell (PEMFC) systems. Empirical parameters are commonly adopted in control-oriented models for such systems, and detailed information about mass transport processes is usually not available. Such models are neither helpful for understanding the internal processes within fuel cells, nor for designing control algorithms to improve system performance. A control-oriented model considering the mass transport processes and actuator properties is still lacking. This paper proposes a nonlinear dynamic mechanism model for the DEA system that can describe the dynamic voltage drop during water flooding with a large current density. The properties of the major components are explained in details, and the procedure of how the purging valves affects the mass transport and cell voltage is revealed quantitatively. The relationship between the minimum cell voltage and purging operations is summarized. The results show that (1) the proposed model can capture the stable and dynamic properties of a fuel cell with a DEA, (2) the cell voltage loss during closing of the purging valve is mainly caused by a decrease in oxygen and hydrogen partial pressures on the catalyst layers and an increase in the liquid water saturation ratio in the gas diffusion layers (GDLs); (3) the most important internal states that affect the stack voltage during purging is the liquid water saturation ratio in the GDLs.
000873869 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000873869 588__ $$aDataset connected to CrossRef
000873869 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b1
000873869 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b2
000873869 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b3
000873869 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4$$ufzj
000873869 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.08.099$$gVol. 230, p. 106 - 121$$p106 - 121$$tApplied energy$$v230$$x0306-2619$$y2018
000873869 8564_ $$uhttps://juser.fz-juelich.de/record/873869/files/1-s2.0-S0306261918312698-main.pdf$$yRestricted
000873869 8564_ $$uhttps://juser.fz-juelich.de/record/873869/files/1-s2.0-S0306261918312698-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873869 909CO $$ooai:juser.fz-juelich.de:873869$$pVDB
000873869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000873869 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000873869 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000873869 9141_ $$y2020
000873869 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000873869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873869 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873869 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873869 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873869 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873869 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873869 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873869 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000873869 920__ $$lyes
000873869 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000873869 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000873869 980__ $$ajournal
000873869 980__ $$aVDB
000873869 980__ $$aI:(DE-Juel1)IEK-14-20191129
000873869 980__ $$aI:(DE-Juel1)IEK-3-20101013
000873869 980__ $$aUNRESTRICTED
000873869 981__ $$aI:(DE-Juel1)IET-4-20191129
000873869 981__ $$aI:(DE-Juel1)ICE-2-20101013
000873869 981__ $$aI:(DE-Juel1)IET-4-20191129