000873870 001__ 873870
000873870 005__ 20240709112143.0
000873870 0247_ $$2doi$$a10.1016/j.enconman.2018.08.070
000873870 0247_ $$2ISSN$$a0196-8904
000873870 0247_ $$2ISSN$$a1879-2227
000873870 0247_ $$2WOS$$aWOS:000447102100064
000873870 037__ $$aFZJ-2020-01062
000873870 082__ $$a620
000873870 1001_ $$0P:(DE-Juel1)171752$$aQiu, Diankai$$b0$$eCorresponding author
000873870 245__ $$aFlow channel design for metallic bipolar plates in proton exchange membrane fuel cells: Experiments
000873870 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000873870 3367_ $$2DRIVER$$aarticle
000873870 3367_ $$2DataCite$$aOutput Types/Journal article
000873870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581683969_18268
000873870 3367_ $$2BibTeX$$aARTICLE
000873870 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873870 3367_ $$00$$2EndNote$$aJournal Article
000873870 520__ $$aThis study offers an efficient design method of flow channels of metallic bipolar plates (BPPs) to improve manufacturing technique of BPPs and maximize power density in proton exchange membrane (PEM) fuel cells. Stamped thin metallic BPPs with anticorrosive and conductive coating are promising candidates for replacing conventional carbon-based BPPs. Nevertheless, unlike carbon-based BPPs, the flow channel design of metallic BPPs should take into account not only the reaction efficiency, but also formability due to the possible rupture of the metallic channel during the micro-forming process. In our previous study, a forming limit model was first proposed to predict the maximum allowable channel height by the forming process. This study is conducted to further propose the method of the design and fabrication of metallic BPPs based on the numerical model. In order to determine channel geometry design from formability perspective, response surface method is utilized to build a formability model. Combining the formability model and reaction efficiency, flow field design for metallic BPPs (channel width of 0.9 mm, rib width of 0.9 mm, channel depth of 0.4 mm and radius of 0.15 mm) is proposed. Experiments on BPP fabrication and assembled 20-cell fuel cell testing are conducted to observe forming quality of micro channel and output performance on the real fuel cell. It is shown that the stamping force grows with increasing channel depth in a nonlinear manner and a blank holder is needed to eliminate the sheet wrinkle in the forming process. The uniformity of the voltage distribution in the 1000 W-class stack further proves the reliability of metallic BPPs designed by our method. The methodology developed is beneficial to the fabrication management of metallic BPPs and effective supplement to the channel design principle for PEM fuel cells.
000873870 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000873870 588__ $$aDataset connected to CrossRef
000873870 7001_ $$0P:(DE-HGF)0$$aPeng, Linfa$$b1
000873870 7001_ $$0P:(DE-HGF)0$$aYi, Peiyun$$b2
000873870 7001_ $$0P:(DE-HGF)0$$aLai, Xinmin$$b3
000873870 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4
000873870 773__ $$0PERI:(DE-600)2000891-0$$a10.1016/j.enconman.2018.08.070$$gVol. 174, p. 814 - 823$$p814 - 823$$tEnergy conversion and management$$v174$$x0196-8904$$y2018
000873870 909CO $$ooai:juser.fz-juelich.de:873870$$pVDB
000873870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171752$$aForschungszentrum Jülich$$b0$$kFZJ
000873870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000873870 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000873870 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000873870 9141_ $$y2020
000873870 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873870 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG CONVERS MANAGE : 2017
000873870 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873870 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873870 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873870 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873870 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873870 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873870 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873870 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG CONVERS MANAGE : 2017
000873870 920__ $$lyes
000873870 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000873870 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000873870 980__ $$ajournal
000873870 980__ $$aVDB
000873870 980__ $$aI:(DE-Juel1)IEK-14-20191129
000873870 980__ $$aI:(DE-Juel1)IEK-3-20101013
000873870 980__ $$aUNRESTRICTED
000873870 981__ $$aI:(DE-Juel1)IET-4-20191129
000873870 981__ $$aI:(DE-Juel1)ICE-2-20101013
000873870 981__ $$aI:(DE-Juel1)IET-4-20191129