000873871 001__ 873871
000873871 005__ 20240712113234.0
000873871 0247_ $$2doi$$a10.1016/j.apenergy.2018.09.117
000873871 0247_ $$2ISSN$$a0306-2619
000873871 0247_ $$2ISSN$$a1872-9118
000873871 0247_ $$2WOS$$aWOS:000452345400012
000873871 037__ $$aFZJ-2020-01063
000873871 082__ $$a620
000873871 1001_ $$0P:(DE-Juel1)171752$$aQiu, Diankai$$b0$$eCorresponding author
000873871 245__ $$aElectrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression
000873871 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000873871 3367_ $$2DRIVER$$aarticle
000873871 3367_ $$2DataCite$$aOutput Types/Journal article
000873871 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581684053_18268
000873871 3367_ $$2BibTeX$$aARTICLE
000873871 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873871 3367_ $$00$$2EndNote$$aJournal Article
000873871 520__ $$aElectrical resistance accounts for a significant part of the performance loss in proton exchange membrane fuel cells. To the best of the authors’ knowledge, this work represents the first direct experimental investigation and comparison of the bulk resistance and microstructure of commercially available gas diffusion layers, carbon paper, carbon cloth and carbon felt, under cyclic and steady loads, which are typical compression conditions in the fuel cell. It was found that with the improvement of contact conductivity between gas diffusion layer and bipolar plate, the bulk resistance of gas diffusion layer accounts for as much as 20% of the resistance in the fuel cell, especially when the assembly pressure is high enough. Experimental results indicate that three kinds of gas diffusion layers show various electrical behaviors under compression due to their different fiber structures. For carbon paper, the resistance displays a gradual decline as the load cycles increases. A reduction in the resistance and obvious fiber cracks are observed when the compression pressure exceeds the “break stress” of 2.0 MPa. For woven carbon cloth, more uniform decline of the resistance is caused by the increasing fiber cracks, which are pulled and bent in the middle of a weave. Although felt gas diffusion layer features the lowest electrical conductivity, its tortuous and thick fibers lead to higher stability in electric resistance and microstructure than bonded carbon paper and woven carbon cloth. This study is helpful for enhancing our understanding of the relationship between electrical resistance and compression loads in the fuel cell with various gas diffusion layers.
000873871 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000873871 588__ $$aDataset connected to CrossRef
000873871 7001_ $$0P:(DE-Juel1)129863$$aJanßen, Holger$$b1
000873871 7001_ $$0P:(DE-HGF)0$$aPeng, Linfa$$b2
000873871 7001_ $$0P:(DE-Juel1)169777$$aIrmscher, Philipp$$b3
000873871 7001_ $$0P:(DE-HGF)0$$aLai, Xinmin$$b4
000873871 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b5
000873871 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.09.117$$gVol. 231, p. 127 - 137$$p127 - 137$$tApplied energy$$v231$$x0306-2619$$y2018
000873871 8564_ $$uhttps://juser.fz-juelich.de/record/873871/files/1-s2.0-S0306261918314284-main.pdf$$yRestricted
000873871 8564_ $$uhttps://juser.fz-juelich.de/record/873871/files/1-s2.0-S0306261918314284-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873871 909CO $$ooai:juser.fz-juelich.de:873871$$pVDB
000873871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171752$$aForschungszentrum Jülich$$b0$$kFZJ
000873871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129863$$aForschungszentrum Jülich$$b1$$kFZJ
000873871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b5$$kFZJ
000873871 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b5$$kRWTH
000873871 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000873871 9141_ $$y2020
000873871 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000873871 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873871 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873871 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873871 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873871 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873871 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873871 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873871 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873871 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873871 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873871 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000873871 920__ $$lyes
000873871 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000873871 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000873871 980__ $$ajournal
000873871 980__ $$aVDB
000873871 980__ $$aI:(DE-Juel1)IEK-14-20191129
000873871 980__ $$aI:(DE-Juel1)IEK-3-20101013
000873871 980__ $$aUNRESTRICTED
000873871 981__ $$aI:(DE-Juel1)IET-4-20191129
000873871 981__ $$aI:(DE-Juel1)ICE-2-20101013
000873871 981__ $$aI:(DE-Juel1)IET-4-20191129