001     873873
005     20240709112143.0
024 7 _ |a 10.1016/j.etran.2019.100003
|2 doi
024 7 _ |a WOS:000658422600003
|2 WOS
037 _ _ |a FZJ-2020-01065
082 _ _ |a 400
100 1 _ |a Andersson, M.
|0 P:(DE-Juel1)168242
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Dynamic contact angle modeling of droplet reattachment at the gas channel wall in polymer electrolyte fuel cells
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619164917_2074
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy security, climate change and air pollution are all motivations for further development of fuel cells. Still, technical problems relating to water management, continue to hinder the marketability of polymer electrolyte fuel cells (PEFCs). The impact of dynamic contact angle (CA) boundary conditions, according to the Kistler model, is evaluated in this paper with the VOF approach, focusing on droplet reattachment at the gas channel wall. From this, it is clear that dynamic CA boundary conditions, compared to static CA boundary conditions, significantly influence the droplet reattachment characteristics, for example for the standard case with a gas velocity of 10 m/s, the first droplet awaits attachment to the channel wall on the side opposite the gas diffusion layer surface for a second droplet before merging and then moving out of the channel together, attached to the channel wall. The impact from dynamic CAs becomes even bigger for lower velocities (5 m/s in this case), where the droplet residence time increases significantly. It is clear that the channel dimensions, gas inlet velocity and value of CAs, as well as if a static or dynamic CA model is used, all have a significant impact on the droplet characteristics in PEFC GCs.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a Flexible Simulation of Fuel Cells with OpenFOAM (jara0070_20131101)
|0 G:(DE-Juel1)jara0070_20131101
|c jara0070_20131101
|f Flexible Simulation of Fuel Cells with OpenFOAM
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beale, Steven
|0 P:(DE-Juel1)157835
|b 1
|u fzj
700 1 _ |a Lehnert, W.
|0 P:(DE-Juel1)129883
|b 2
|u fzj
773 _ _ |a 10.1016/j.etran.2019.100003
|g Vol. 1, p. 100003 -
|0 PERI:(DE-600)2981331-1
|p 100003 -
|t eTransportation
|v 1
|y 2019
|x 2590-1168
909 C O |p VDB
|o oai:juser.fz-juelich.de:873873
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168242
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157835
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21