000873875 001__ 873875
000873875 005__ 20240712113250.0
000873875 0247_ $$2doi$$a10.1016/j.etran.2019.100026
000873875 0247_ $$2WOS$$aWOS:000658423200005
000873875 037__ $$aFZJ-2020-01067
000873875 082__ $$a400
000873875 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0$$eCorresponding author$$ufzj
000873875 245__ $$aA model for concentration impedance of a PEM fuel cell
000873875 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000873875 3367_ $$2DRIVER$$aarticle
000873875 3367_ $$2DataCite$$aOutput Types/Journal article
000873875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581685242_22855
000873875 3367_ $$2BibTeX$$aARTICLE
000873875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873875 3367_ $$00$$2EndNote$$aJournal Article
000873875 520__ $$aWe report an analytical physics–based model for oxygen concentration perturbation spectra of a PEM fuel cell cathode side. An expression for the concentration impedance (CI) taking into account oxygen transport in the cathode catalyst layer (CCL) and the gas diffusion layer (GDL) is derived. In the static limit the CI gives the limiting current density due to oxygen transport in the GDL. The Bode plots of real and imaginary part of the CI have minima at the characteristic frequencies corresponding to oxygen transport in the GDL and the CCL, respectively. These features enable direct estimation of the respective oxygen diffusion coefficients without curve fitting.
000873875 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000873875 588__ $$aDataset connected to CrossRef
000873875 773__ $$0PERI:(DE-600)2981331-1$$a10.1016/j.etran.2019.100026$$gVol. 2, p. 100026 -$$p100026 -$$teTransportation$$v2$$x2590-1168$$y2019
000873875 8564_ $$uhttps://juser.fz-juelich.de/record/873875/files/1-s2.0-S2590116819300268-main.pdf$$yRestricted
000873875 8564_ $$uhttps://juser.fz-juelich.de/record/873875/files/1-s2.0-S2590116819300268-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873875 909CO $$ooai:juser.fz-juelich.de:873875$$pVDB
000873875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
000873875 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000873875 9141_ $$y2020
000873875 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873875 920__ $$lyes
000873875 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000873875 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000873875 980__ $$ajournal
000873875 980__ $$aVDB
000873875 980__ $$aI:(DE-Juel1)IEK-14-20191129
000873875 980__ $$aI:(DE-Juel1)IEK-3-20101013
000873875 980__ $$aUNRESTRICTED
000873875 981__ $$aI:(DE-Juel1)IET-4-20191129
000873875 981__ $$aI:(DE-Juel1)ICE-2-20101013
000873875 981__ $$aI:(DE-Juel1)IET-4-20191129