000873883 001__ 873883
000873883 005__ 20210315194459.0
000873883 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.024408
000873883 0247_ $$2Handle$$a2128/24359
000873883 0247_ $$2WOS$$aWOS:000513553500001
000873883 037__ $$aFZJ-2020-01073
000873883 082__ $$a530
000873883 1001_ $$0P:(DE-HGF)0$$aZhou, Xiaodong$$b0
000873883 245__ $$aGiant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides
000873883 260__ $$aCollege Park, MD$$bAPS$$c2020
000873883 3367_ $$2DRIVER$$aarticle
000873883 3367_ $$2DataCite$$aOutput Types/Journal article
000873883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615812525_29418
000873883 3367_ $$2BibTeX$$aARTICLE
000873883 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873883 3367_ $$00$$2EndNote$$aJournal Article
000873883 520__ $$aThe anomalous Nernst effect (ANE)—the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets—is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin-order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn3XN(X=Ga, Zn, Ag, and Ni). The ANE in Mn3XN is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn3XN compounds, Mn3NiN presents the most significant anomalous Nernst conductivity of 1.80AK−1m−1 at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn3NiN, being one order of magnitude larger than that in the famous Mn3Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn3NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a host material for realizing antiferromagnetic spin caloritronics that promises exciting applications in energy conversion and information processing.
000873883 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000873883 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000873883 536__ $$0G:(DE-Juel1)jiff40_20190501$$aTopological transport in real materials from ab initio (jiff40_20190501)$$cjiff40_20190501$$fTopological transport in real materials from ab initio$$x2
000873883 588__ $$aDataset connected to CrossRef
000873883 7001_ $$0P:(DE-Juel1)161179$$aHanke, Jan-Philipp$$b1
000873883 7001_ $$0P:(DE-Juel1)172699$$aFeng, Wanxiang$$b2$$eCorresponding author$$ufzj
000873883 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b3
000873883 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b4
000873883 7001_ $$0P:(DE-HGF)0$$aYao, Yugui$$b5
000873883 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.024408$$gVol. 4, no. 2, p. 024408$$n2$$p024408$$tPhysical review materials$$v4$$x2475-9953$$y2020
000873883 8564_ $$uhttps://juser.fz-juelich.de/record/873883/files/ANE_in_Mn3XN.pdf$$yOpenAccess
000873883 8564_ $$uhttps://juser.fz-juelich.de/record/873883/files/PhysRevMaterials.4.024408-1.pdf$$yOpenAccess
000873883 8564_ $$uhttps://juser.fz-juelich.de/record/873883/files/ANE_in_Mn3XN.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873883 8564_ $$uhttps://juser.fz-juelich.de/record/873883/files/PhysRevMaterials.4.024408-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873883 909CO $$ooai:juser.fz-juelich.de:873883$$popenaire$$pVDB$$popen_access$$pdnbdelivery$$pdriver
000873883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161179$$aForschungszentrum Jülich$$b1$$kFZJ
000873883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172699$$aForschungszentrum Jülich$$b2$$kFZJ
000873883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b3$$kFZJ
000873883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b4$$kFZJ
000873883 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000873883 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000873883 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000873883 9141_ $$y2020
000873883 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873883 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000873883 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000873883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873883 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873883 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873883 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873883 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873883 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000873883 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000873883 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000873883 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000873883 980__ $$ajournal
000873883 980__ $$aVDB
000873883 980__ $$aI:(DE-Juel1)PGI-1-20110106
000873883 980__ $$aI:(DE-Juel1)IAS-1-20090406
000873883 980__ $$aI:(DE-82)080009_20140620
000873883 980__ $$aI:(DE-82)080012_20140620
000873883 980__ $$aUNRESTRICTED
000873883 9801_ $$aFullTexts