001     873883
005     20210315194459.0
024 7 _ |a 10.1103/PhysRevMaterials.4.024408
|2 doi
024 7 _ |a 2128/24359
|2 Handle
024 7 _ |a WOS:000513553500001
|2 WOS
037 _ _ |a FZJ-2020-01073
082 _ _ |a 530
100 1 _ |a Zhou, Xiaodong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615812525_29418
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The anomalous Nernst effect (ANE)—the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets—is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin-order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn3XN(X=Ga, Zn, Ag, and Ni). The ANE in Mn3XN is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn3XN compounds, Mn3NiN presents the most significant anomalous Nernst conductivity of 1.80AK−1m−1 at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn3NiN, being one order of magnitude larger than that in the famous Mn3Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn3NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a host material for realizing antiferromagnetic spin caloritronics that promises exciting applications in energy conversion and information processing.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20190501)
|0 G:(DE-Juel1)jiff40_20190501
|c jiff40_20190501
|f Topological transport in real materials from ab initio
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hanke, Jan-Philipp
|0 P:(DE-Juel1)161179
|b 1
700 1 _ |a Feng, Wanxiang
|0 P:(DE-Juel1)172699
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 3
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 4
700 1 _ |a Yao, Yugui
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1103/PhysRevMaterials.4.024408
|g Vol. 4, no. 2, p. 024408
|0 PERI:(DE-600)2898355-5
|n 2
|p 024408
|t Physical review materials
|v 4
|y 2020
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/873883/files/ANE_in_Mn3XN.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873883/files/PhysRevMaterials.4.024408-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873883/files/ANE_in_Mn3XN.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873883/files/PhysRevMaterials.4.024408-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873883
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21