001     873887
005     20240625095126.0
037 _ _ |a FZJ-2020-01077
041 _ _ |a English
100 1 _ |a Maggi, Luca
|0 P:(DE-Juel1)169313
|b 0
|e Corresponding author
245 _ _ |a Modeling the allosteric modulation on a G-Protein Coupled Receptor: the case of M2 muscarinic Acetylcholine Receptor in complex with LY211960
260 _ _ |a Mittweida
|c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1581923356_18672
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Allosteric modulation is involved in a plethora of diverse protein functions, which are fundamental for cells’ life. This phenomenon can be thought as communication between two topographically distinct site of a protein structure. How this communication occurs is still matter of debate. Many different descriptions have been presented so far. Here we consider a specific case where any significant conformational change is involved upon allosteric modulator binding and the phenomenon is depicted as a vibrational energy diffusion process between distant protein regions. We applied this model, by employing computational tools, to the human muscarinic receptor M2, a transmembrane protein G-protein coupled receptor known to undergo allosteric modulation whose recently X-ray structure has been recently resolved both with and without the presence of a particular allosteric modulator. Our calculations, performed on these two receptor structures, suggest that for this case the allosteric modulator modifies the energy current between functionally relevant regions of the protein; this allows to identify the main residues responsible for this modulation. These results contribute to shed light on the molecular basis of allosteric modulation and may help design new allosteric ligands.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 1
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 2
773 _ _ |y 2020
|0 PERI:(DE-600)1474639-6
|t Scientific reports
|x 1430-3698
856 4 _ |u https://juser.fz-juelich.de/record/873887/files/Modeling_allosteric_modulation_GPCR_Luca_Maggi_Main_Text_resubmission.docx
|y Restricted
909 C O |o oai:juser.fz-juelich.de:873887
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169313
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)169313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145614
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145921
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)145921
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21