000873889 001__ 873889
000873889 005__ 20230815122845.0
000873889 0247_ $$2doi$$a10.3389/fmicb.2020.00114
000873889 0247_ $$2Handle$$a2128/26914
000873889 0247_ $$2altmetric$$aaltmetric:76052041
000873889 0247_ $$2pmid$$a32117139
000873889 0247_ $$2WOS$$aWOS:000517512900001
000873889 037__ $$aFZJ-2020-01079
000873889 082__ $$a570
000873889 1001_ $$0P:(DE-Juel1)168197$$aBollinger, Alexander$$b0
000873889 245__ $$aA Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri – Structural and Functional Insights
000873889 260__ $$aLausanne$$bFrontiers Media$$c2020
000873889 3367_ $$2DRIVER$$aarticle
000873889 3367_ $$2DataCite$$aOutput Types/Journal article
000873889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611320862_26190
000873889 3367_ $$2BibTeX$$aARTICLE
000873889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873889 3367_ $$00$$2EndNote$$aJournal Article
000873889 520__ $$aBiodegradation of synthetic polymers, in particular polyethylene terephthalate (PET), is of great importance, since environmental pollution with PET and other plastics has become a severe global problem. Here, we report on the polyester degrading ability of a novel carboxylic ester hydrolase identified in the genome of the marine hydrocarbonoclastic bacterium Pseudomonas aestusnigri VGXO14T. The enzyme, designated PE-H, belongs to the type IIa family of PET hydrolytic enzymes as indicated by amino acid sequence homology. It was produced in Escherichia coli, purified and its crystal structure was solved at 1.09 Å resolution representing the first structure of a type IIa PET hydrolytic enzyme. The structure shows a typical α/β-hydrolase fold and high structural homology to known polyester hydrolases. PET hydrolysis was detected at 30°C with amorphous PET film (PETa), but not with PET film from a commercial PET bottle (PETb). A rational mutagenesis study to improve the PET degrading potential of PE-H yielded variant PE-H (Y250S) which showed improved activity, ultimately also allowing the hydrolysis of PETb. The crystal structure of this variant solved at 1.35 Å resolution allowed to rationalize the improvement of enzymatic activity. A PET oligomer binding model was proposed by molecular docking computations. Our results indicate a significant potential of the marine bacterium P. aestusnigri for PET degradation.
000873889 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000873889 536__ $$0G:(GEPRIS)417919780$$aDFG project 417919780 - Zentrum für strukturelle Studien $$c417919780$$x1
000873889 588__ $$aDataset connected to CrossRef
000873889 7001_ $$0P:(DE-Juel1)128936$$aThies, Stephan$$b1
000873889 7001_ $$0P:(DE-Juel1)141796$$aKnieps-Grünhagen, Esther$$b2
000873889 7001_ $$0P:(DE-Juel1)174133$$aGertzen, Christoph$$b3
000873889 7001_ $$0P:(DE-HGF)0$$aKobus, Stefanie$$b4
000873889 7001_ $$0P:(DE-HGF)0$$aHöppner, Astrid$$b5
000873889 7001_ $$0P:(DE-HGF)0$$aFerrer, Manuel$$b6
000873889 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b7$$ufzj
000873889 7001_ $$0P:(DE-HGF)0$$aSmits, Sander H. J.$$b8
000873889 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b9$$eCorresponding author
000873889 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2020.00114$$gVol. 11, p. 114$$p114$$tFrontiers in microbiology$$v11$$x1664-302X$$y2020
000873889 8564_ $$uhttps://juser.fz-juelich.de/record/873889/files/fmicb-11-00114.pdf$$yOpenAccess
000873889 8564_ $$uhttps://juser.fz-juelich.de/record/873889/files/fmicb-11-00114.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873889 8767_ $$92020-02-14$$d2020-02-14$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 2507.50
000873889 909CO $$ooai:juser.fz-juelich.de:873889$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000873889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168197$$aForschungszentrum Jülich$$b0$$kFZJ
000873889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128936$$aForschungszentrum Jülich$$b1$$kFZJ
000873889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141796$$aForschungszentrum Jülich$$b2$$kFZJ
000873889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b7$$kFZJ
000873889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b9$$kFZJ
000873889 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000873889 9141_ $$y2020
000873889 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873889 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873889 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873889 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2017
000873889 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873889 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873889 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873889 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873889 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873889 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000873889 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873889 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873889 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873889 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873889 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000873889 980__ $$ajournal
000873889 980__ $$aVDB
000873889 980__ $$aUNRESTRICTED
000873889 980__ $$aI:(DE-Juel1)IMET-20090612
000873889 980__ $$aAPC
000873889 9801_ $$aAPC
000873889 9801_ $$aFullTexts