000873910 001__ 873910
000873910 005__ 20210130004535.0
000873910 0247_ $$2doi$$a10.1038/s41598-020-59329-0
000873910 0247_ $$2Handle$$a2128/24342
000873910 0247_ $$2altmetric$$aaltmetric:75793198
000873910 0247_ $$2pmid$$apmid:32047245
000873910 0247_ $$2WOS$$aWOS:000562858200003
000873910 037__ $$aFZJ-2020-01095
000873910 082__ $$a600
000873910 1001_ $$0P:(DE-Juel1)166584$$aVotinov, Mikhail$$b0$$eCorresponding author
000873910 245__ $$aEffects of exogenous testosterone application on network connectivity within emotion regulation systems
000873910 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000873910 3367_ $$2DRIVER$$aarticle
000873910 3367_ $$2DataCite$$aOutput Types/Journal article
000873910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582006431_32368
000873910 3367_ $$2BibTeX$$aARTICLE
000873910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873910 3367_ $$00$$2EndNote$$aJournal Article
000873910 500__ $$aThis work was supported via internal funding by the interdisciplinary center for clinical research (IZKF Aachen; grant number N 7–7) of the School of Medicine, RWTH Aachen University, as a part of a joint project on alterations of neural connectivity. In addition, the project was supported by the German Research Foundation (DFG, IRTG 2150). The funding sources had no role in study design, in the collection, analysis, and interpretation of data, in the writing of the report, and in the decision to submit the article for publication. There are no conflicts of interest.
000873910 520__ $$aStudies with steroid hormones underlined the vital role of testosterone on social-emotional processing. However, there is still a lack of studies investigating whether testosterone modulates network connectivity during resting-state. Here, we tested how the exogenous application of testosterone would affect functional connectivity between regions implicated in emotion regulation. In total, 96 male participants underwent resting-state fMRI scanning. Before the measurement, half of the subjects received 5 g TestimTM gel (containing 50 mg testosterone) and the other half a corresponding amount of placebo gel. Seeds for the connectivity analysis were meta-analytically defined. First, all regions associated with emotion regulation were chosen via Neurosynth (data driven). Among those, specific seeds were selected and categorized based on the neural model of emotion regulation by Etkin and colleagues (Etkin et al., 2015) (theory-guided). Resting-state connectivity analysis revealed decreased connectivity between the right DLPFC and the right amygdala as well as between the VMPFC and the left IPL for the testosterone group compared to the placebo group. A complementary dynamic causal modeling (DCM) analysis on findings from the resting-state connectivity analysis underlined a bidirectional coupling which was decreased close to zero by testosterone administration. Our results demonstrate that testosterone administration disrupts resting-state connectivity within fronto-subcortical and fronto-parietal circuits. The findings suggest that even without a specific task (e.g. challenge, reward processing) testosterone modulates brain networks important for social-emotional processing.
000873910 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000873910 588__ $$aDataset connected to CrossRef
000873910 7001_ $$0P:(DE-Juel1)172866$$aWagels, Lisa$$b1
000873910 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2
000873910 7001_ $$0P:(DE-Juel1)179365$$aKellermann, Thilo$$b3$$ufzj
000873910 7001_ $$0P:(DE-HGF)0$$aGoerlich, Katharina S.$$b4
000873910 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b5
000873910 7001_ $$0P:(DE-Juel1)172840$$aHabel, Ute$$b6
000873910 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-59329-0$$gVol. 10, no. 1, p. 2352$$n1$$p2352$$tScientific reports$$v10$$x2045-2322$$y2020
000873910 8564_ $$uhttps://juser.fz-juelich.de/record/873910/files/Votinov%2020.pdf$$yOpenAccess
000873910 8564_ $$uhttps://juser.fz-juelich.de/record/873910/files/Votinov%2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873910 909CO $$ooai:juser.fz-juelich.de:873910$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166584$$aForschungszentrum Jülich$$b0$$kFZJ
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172866$$aForschungszentrum Jülich$$b1$$kFZJ
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179365$$aForschungszentrum Jülich$$b3$$kFZJ
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000873910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172840$$aForschungszentrum Jülich$$b6$$kFZJ
000873910 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000873910 9141_ $$y2020
000873910 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873910 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873910 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873910 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873910 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000873910 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000873910 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873910 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873910 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873910 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873910 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873910 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873910 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873910 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873910 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873910 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873910 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873910 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873910 920__ $$lyes
000873910 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000873910 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000873910 980__ $$ajournal
000873910 980__ $$aVDB
000873910 980__ $$aUNRESTRICTED
000873910 980__ $$aI:(DE-Juel1)INM-7-20090406
000873910 980__ $$aI:(DE-Juel1)INM-10-20170113
000873910 9801_ $$aFullTexts