000873911 001__ 873911
000873911 005__ 20210130004535.0
000873911 0247_ $$2doi$$a10.3389/fneur.2020.00018
000873911 0247_ $$2Handle$$a2128/24350
000873911 0247_ $$2altmetric$$aaltmetric:74591668
000873911 0247_ $$2pmid$$apmid:32038473
000873911 0247_ $$2WOS$$aWOS:000529929300001
000873911 037__ $$aFZJ-2020-01096
000873911 082__ $$a610
000873911 1001_ $$0P:(DE-HGF)0$$aSchnellbächer, Gereon J.$$b0
000873911 245__ $$aFunctional Characterization of Atrophy Patterns Related to Cognitive Impairment
000873911 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000873911 3367_ $$2DRIVER$$aarticle
000873911 3367_ $$2DataCite$$aOutput Types/Journal article
000873911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582035280_32368
000873911 3367_ $$2BibTeX$$aARTICLE
000873911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873911 3367_ $$00$$2EndNote$$aJournal Article
000873911 500__ $$aFUNDINGKR was funded by the German Federal Ministry of Educationand Research (BMBF 01GQ1402). ID was supported by theSTART-Program(08/16) of the Faculty of Medicine at theRWTHAachen University.
000873911 520__ $$aIntroduction: Mild cognitive impairment (MCI) is a heterogenous syndrome considered as a risk factor for developing dementia. Previous work examining morphological brain changes in MCI has identified a temporo-parietal atrophy pattern that suggests a common neuroanatomical denominator of cognitive impairment. Using functional connectivity analyses of structurally affected regions in MCI, we aimed to investigate and characterize functional networks formed by these regions that appear to be particularly vulnerable to disease-related disruptions. Methods: Areas of convergent atrophy in MCI were derived from a quantitative meta-analysis and encompassed left and right medial temporal (i.e., hippocampus, amygdala), as well as parietal regions (precuneus), which were defined as seed regions for connectivity analyses. Both task-based meta-analytical connectivity modeling (MACM) based on the BrainMap database and task-free resting-state functional MRI in a large cohort of older adults from the 1000BRAINS study were applied. We additionally assessed behavioral characteristics associated with the seed regions using BrainMap meta-data and investigated correlations of resting-state connectivity with age. Results: The left temporal seed showed stronger associations with a fronto-temporal network, whereas the right temporal atrophy cluster was more linked to cortico-striatal regions. In accordance with this, behavioral analysis indicated an emphasis of the left temporal seed on language generation, and the right temporal seed was associated with the domains of emotion and attention. Task-independent co-activation was more pronounced in the parietal seed, which demonstrated stronger connectivity with a frontoparietal network and associations with introspection and social cognition. Correlation analysis revealed both decreasing and increasing functional connectivity with higher age that may add to pathological processes but also indicates compensatory mechanisms of functional reorganization with increasing age. Conclusion: Our findings provide an important pathophysiological link between morphological changes and the clinical relevance of major structural damage in MCI. Multimodal analysis of functional networks related to areas of MCI-typical atrophy may help to explain cognitive decline and behavioral alterations not tractable by a mere anatomical interpretation and therefore contribute to prognostic evaluations.Copyright © 2020 Schnellbächer, Hoffstaedter, Eickhoff, Caspers, Nickl-Jockschat, Fox, Laird, Schulz, Reetz and Dogan.
000873911 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000873911 588__ $$aDataset connected to CrossRef
000873911 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1
000873911 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b2
000873911 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b3
000873911 7001_ $$0P:(DE-HGF)0$$aNickl-Jockschat, Thomas$$b4
000873911 7001_ $$0P:(DE-HGF)0$$aFox, Peter T.$$b5
000873911 7001_ $$0P:(DE-HGF)0$$aLaird, Angela R.$$b6
000873911 7001_ $$0P:(DE-Juel1)171786$$aSchulz, Jörg B.$$b7
000873911 7001_ $$0P:(DE-Juel1)177889$$aReetz, Kathrin$$b8$$ufzj
000873911 7001_ $$0P:(DE-HGF)0$$aDogan, Imis$$b9$$eCorresponding author
000873911 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2020.00018$$gVol. 11, p. 18$$p18$$tFrontiers in neurology$$v11$$x1664-2295$$y2020
000873911 8564_ $$uhttps://juser.fz-juelich.de/record/873911/files/Schnellb%C3%A4cher20.pdf$$yOpenAccess
000873911 8564_ $$uhttps://juser.fz-juelich.de/record/873911/files/Schnellb%C3%A4cher20.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873911 909CO $$ooai:juser.fz-juelich.de:873911$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b1$$kFZJ
000873911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
000873911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b3$$kFZJ
000873911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171786$$aForschungszentrum Jülich$$b7$$kFZJ
000873911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177889$$aForschungszentrum Jülich$$b8$$kFZJ
000873911 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000873911 9141_ $$y2020
000873911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873911 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROL : 2017
000873911 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873911 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873911 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000873911 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873911 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873911 920__ $$lyes
000873911 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000873911 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000873911 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000873911 980__ $$ajournal
000873911 980__ $$aVDB
000873911 980__ $$aUNRESTRICTED
000873911 980__ $$aI:(DE-Juel1)INM-7-20090406
000873911 980__ $$aI:(DE-Juel1)INM-1-20090406
000873911 980__ $$aI:(DE-Juel1)INM-11-20170113
000873911 9801_ $$aFullTexts