001     873925
005     20240712100905.0
024 7 _ |a 10.1029/2019GL084157
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a 2128/24347
|2 Handle
024 7 _ |a altmetric:75790910
|2 altmetric
024 7 _ |a WOS:000529120100040
|2 WOS
037 _ _ |a FZJ-2020-01100
082 _ _ |a 550
100 1 _ |a Kock, Sebastian T.
|0 P:(DE-Juel1)167587
|b 0
|e Corresponding author
245 _ _ |a Multi‐Centennial‐Scale Variations of South American Summer Monsoon Intensity in the Southern Central Andes (24–27°S) During the Late Holocene
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620121494_524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxygen isotope records of cushion‐plant peat cellulose from the southern central Andes capture evidence for significant environmental changes. We observe that the δ18Ocell peatland record from Cerro Tuzgle (24°S) is in high conformity with the respective Lagunillas peatland record (27°S). During the late Holocene, two significant fluctuations occurred and are interpreted as regional moisture signals with increased precipitation amounts indicated during multi‐centennial phases from 1,530 to 1,270 cal. yr BP and from 470 to 70 cal. yr BP. These fluctuations can be best explained by changes in the strength of the South American summer monsoon (SASM). This interpretation is further supported by consistency with northern Andean paleoclimate records (10–13°S) and very high correlation (R2 = 0.76) with the Southern Oscillation Index. The congruent precipitation signals suggest the persistent climatic control of the SASM‐strength in this latitudinal band during the last 1,800 years.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schittek, Karsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mächtle, Bertil
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Maldonado, Antonio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vos, Heinz
|0 P:(DE-Juel1)177902
|b 4
700 1 _ |a Lupo, Liliana C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kulemeyer, Julio J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wissel, Holger
|0 P:(DE-Juel1)129557
|b 7
700 1 _ |a Schäbitz, Frank
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lücke, Andreas
|0 P:(DE-Juel1)129567
|b 9
773 _ _ |a 10.1029/2019GL084157
|g Vol. 47, no. 4
|0 PERI:(DE-600)2021599-X
|n 4
|p e2019GL084157
|t Geophysical research letters
|v 47
|y 2020
|x 1944-8007
856 4 _ |u https://juser.fz-juelich.de/record/873925/files/Kock_et_al-2020-Geophysical_Research_Letters.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873925/files/Kock_et_al-2020-Geophysical_Research_Letters.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873925
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129557
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129567
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Tropospheric trace substances and their transformation processes
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21