000873932 001__ 873932
000873932 005__ 20240313103127.0
000873932 0247_ $$2Handle$$a2128/24387
000873932 037__ $$aFZJ-2020-01105
000873932 041__ $$aEnglish
000873932 1001_ $$0P:(DE-Juel1)178793$$aUlianych, Danylo$$b0$$eCorresponding author$$ufzj
000873932 1112_ $$aHuman Brain Project Summit$$cAthens$$d2020-02-03 - 2020-02-06$$wGreece
000873932 245__ $$aDesigning reproducible analysis workflows for experimental and simulated activity using Elephant
000873932 260__ $$c2020
000873932 3367_ $$033$$2EndNote$$aConference Paper
000873932 3367_ $$2BibTeX$$aINPROCEEDINGS
000873932 3367_ $$2DRIVER$$aconferenceObject
000873932 3367_ $$2ORCID$$aCONFERENCE_POSTER
000873932 3367_ $$2DataCite$$aOutput Types/Conference Poster
000873932 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1582287753_17377$$xInvited
000873932 520__ $$aNeuroscientists have a diversified and constantly growing repertoire of methods to analyze neuronal activity data. Moreover, the growing availability of open data sets containing neuronal activity data puts modelers in a position to perform a more in-depth validation of their models (e.g., [1]) based on the statistical descriptions of the activity observed in experiments. However, the increased possibilities also come at the cost of higher complexity of such analysis and validation processes. Here, we showcase the state of HBP-enabled, tool-based workflow solutions that implement rigorous and well-defined data handling and analysis, as well as model validation schemes, for activity data such as spike trains or local field potentials. We demonstrate methods for data and metadata representation, and its analysis using multiple emerging open-source software tools (e.g., [2-4]). Analysis is performed using the Electrophysiology Analysis Toolkit (Elephant, http://neuralensemble.org/elephant/) as a community-centered analysis framework for parallel, multi-scale activity data developed within the HBP, while validation is carried out using the HBP validation framework, and in particular the NetworkUnit library [5-7]. The interplay between the tools is showcased by integrating them into a robust workflow solution. Concrete examples on how to utilize these tools for scientific discovery in conjunction with the Collaboratory and Knowledgegraph HBP infrastructure components, as well as with the snakemake workflow tool, are given in the context of the use cases of SP3 [8,9].References1. van Albada, S.J. et al. (2018). Front Neuroinf 12, 291.2. Garcia, S. et al. (2014). Front Neuroinf 8, 10.3. Zehl, L. et al. (2016). Front Neuroinf 10, 26.4. Grewe, J. et al. (2011). Front Neuroinf 5, 16.5. Gutzen, R. et al. (2018) Front Neuroinf 12, 90.6. Omar, C. et al. (2014). ICSE Companion 2014, 524–527.7. Sarma, G. P. et al. (2016). F1000 Research, 5:1946.8. Pastorelli, E. et al. (2019) Front. Syst. Neurosci 13, 339. De Bonis, G. et al. (2019) Front. Syst. Neurosci. doi: 10.3389/fnsys.2019.00070 (in press)
000873932 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000873932 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000873932 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000873932 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b1$$ufzj
000873932 7001_ $$0P:(DE-Juel1)161295$$aSprenger, Julia$$b2$$ufzj
000873932 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b3
000873932 7001_ $$0P:(DE-HGF)0$$aDe Bonis, Giulia$$b4
000873932 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b5
000873932 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b6$$ufzj
000873932 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b7$$ufzj
000873932 8564_ $$uhttps://juser.fz-juelich.de/record/873932/files/HBPSummit_Elephant_poster.pdf$$yOpenAccess
000873932 8564_ $$uhttps://juser.fz-juelich.de/record/873932/files/HBPSummit_Elephant_poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873932 909CO $$ooai:juser.fz-juelich.de:873932$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000873932 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873932 9141_ $$y2020
000873932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178793$$aForschungszentrum Jülich$$b0$$kFZJ
000873932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b1$$kFZJ
000873932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161295$$aForschungszentrum Jülich$$b2$$kFZJ
000873932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b6$$kFZJ
000873932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b7$$kFZJ
000873932 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000873932 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000873932 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000873932 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000873932 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000873932 9801_ $$aFullTexts
000873932 980__ $$aposter
000873932 980__ $$aVDB
000873932 980__ $$aUNRESTRICTED
000873932 980__ $$aI:(DE-Juel1)INM-6-20090406
000873932 980__ $$aI:(DE-Juel1)INM-10-20170113
000873932 980__ $$aI:(DE-Juel1)IAS-6-20130828
000873932 980__ $$aOPENSCIENCE
000873932 981__ $$aI:(DE-Juel1)IAS-6-20130828